
Implementation of
AD-FMCOMMS1-EBZ module in GNU

Radio

Daniel F. Contreras-Hernándeza, Víktor I. Rodríguez-Abdaláa, Jorge Flores-Troncosoa, Remberto
Sandoval-Aréchigaa, Salvador Ibarra-Delgadoa

aUniversidad Autónoma de Zacatecas (UAZ), Unidad Académica de Ingeniería Eléctrica,
Centro de Investigación, Innovación y Desarrollo en Telecomunicaciones

Av. López Velarde 801, Col. Centro, Zacatecas , Zac., México, 98000.
{ abdala,jflorest,rsandoval,sibarra}@ uaz. edu. mx

2018 Published by DIFU100ci@ http: // difu100cia. uaz. edu. mx

Abstract

The AD-FMCOMMS1-EBZ provides an analog front-end for a wide range of compute-intensive FPGA-based radio
applications that addresses a broad range of research, academic, industrial and defense applications, and with
GNU Radio framework the system modeling could be deployed in general purpose computers. This paper describes
the implementation of a signal processing block in GNU Radio to allow the reception of signals from the evaluation
board using libiio.

Keywords: AD-FMCOMMS1-EBZ, GNU Radio, libiio.

1. Introduction

Nowadays, in many communications systems the
Software Defined Radio (SDR) has become the
default standard due to the advantage of RF inte-

grated circuits (RFICs) and FPGA technologies, which
immediately increase the SDRs diversification in fields
beyond military communications thus allowing an op-
timal use of its features. 4G LTE infrastructure is an
example of such, which is based on RFICs and FP-
GAS, so it constitutes a great opportunity for the SDR
development [1, 2, 3, 4].

The initial impulse given to 4G technology makes
the SDR a platform on which the next generation on
wireless communications will be developed. Therefore,
technologies such as Internet of Things (IoT) or wireless

sensor networks will require new generation hardware
and software with SDRs embedded [4].

One of these technologies is the single-chip mono-
lithic, which is used to reduce cost, size, weight and
power (SWaP) in combination with new processors,
these will allow FPGAs to merge with Analog to Dig-
ital Converters (ADCs) and Digital to Analog Converters
(DACs) into the core processor, thus leaving the SDR
limitations due software problems [4].

The aim of this paper is the implementation of a signal
processing block for the RF module AD-FMCOMMS1-
EBZ in the GNU Radio framework to perform design of
communications systems based on SDR.

DIFU100 ci@. Revista electrónica de Ingeniería y Tecnologías, Universidad Autónoma de Zacatecas http://difu100cia.uaz.edu.mx

2



DIFU100 ci@ Vol. 12, No.1, Mayo - Agosto 2018 ISSN:2007-3585

2. System Description

The AD-FMCOMMS1-EBZ evaluation board is used to
develop last-generation aerospace, satellite, military and
commercial telecommunications prototypes with SDR
capabilities, but there is not an integration with GNU
Radio in order to develop telecommunications systems.
The GNU Radio integration with the Industrial I/O sub-
system will facilitate the modeling of prototypes using the
AD-FMCOMMS1-EBZ board with efficient performance
for measurements and allowing modifications with the
advantages of software design instead of hardware re-
design.

2.1. GNU Radio

GNU Radio is a toolkit which provides signal processing
blocks to implement SDR applications. Its main pur-
pose is to facilitate the signal and data processing in
modulation, demodulation, channel coding and interme-
diate frequency stages through a C++ native backend
for critical signal processing, and a Python frontend for
non-performance functions [5, 6, 7].

GNU Radio framework is based on a pattern design
via graphs, as shown in Fig. 1, and its nodes are called
blocks which are connected through ports. These blocks
represent the digital signal processing to be applied
upon the signal [5].

Figure 1. Example of a signal processing flow graph in GNU Radio.

2.2. Evaluation Board AD-FMCOMMS1-EBZ

The AD-FMCOMMS1-EBZ evaluation board is a high
speed RF module that provides an analog frontend for
multiple devices such as sensors and measuring de-
vices. These are reconfigurable via software to a fre-
quency range from 400 MHz to 4 GHz [8].

As shown in Fig. 2, the RF module has an ADC
based on AD9643 for data reception, and a DAC based
on AD9122 for data transmission [8, 9].

The received signal from the antenna is sent to
ADL5380, a quadrature demodulator which operates be-
tween 400 and 6000 MHz with a 500 MHz bandwidth, in

combination with the broadband synthesizer ADF4351,
which operates from 35 MHz to 4400 MHz that deliv-
ers two reception channels. The Demodulated signal
is regenerated via dual Variable Gain Amplifier (VGA)
AD8366 in a 600 MHz operation limit. Finally, the signal
is sent to the AD9643 ADC which generates the digital
data for the FPGA [9].

For transmission, the digital data received from the
FPGA is sent to the AD9122 DAC where the recon-
structed analog signal is generated in two channels to
the ADL5375 quadrature modulator. It operates from
35 MHz to 6000 MHz and the ADF4351 broadband syn-
thesizer provides the modulated signal to the ADL5620
RF/IF amplifier which operates from 50 MHz to 4 GHz.
The modulated signal is sent to the RF output [9].

Figure 2. Functional block diagram of the AD-FMCOMMS1-EBZ
board.

2.3. Linux Industrial I/O Subsystem

In Fig. 3 it is observed how the Analog Devices Industrial
I/O (IIO) subsystem provides a layered communication
model to ADCs and DACs through multiple platforms
and operative systems [10].

Figure 3. IIO Subsystem Overview.

3



DIFU100 ci@ Vol. 12, No.1, Mayo - Agosto 2018 ISSN:2007-3585

The IIO Linux drivers are focused for PLL synthesizers
with serial interface and provide a unified driver frame-
work for various types of converters and sensors using
multiple physical interfaces (i2c, spi, etc) as shown in
Fig. 4 [10].

Figure 4. Linux Drivers for the AD-FMCOMMS1-EBZ board.

2.4. Linux Industrial I/O Library

The Industrial I/O subsystem library (libiio) allows the
development of applications using IIO devices. It uses
the IIO standardized interface of Linux kernel which is an
interpreter between an application and the Linux kernel
to support the IIO devices and their output channels
[11, 12].

2.4.1. Backends

Fig. 5 shows the libiio backends, these are:

• XML backend.

• Local backend.

• Network backend.

Figure 5. Backend prototypes of libiio.

The structure shown in Fig. 6 indicates that a backend
is associated to an iio_context object, where the object
has a pointer to the iio_backend_ops structure which
contains a set of low-level functions according to the
selected backend. These functions include: opening a
device, reading the attributes of a device and accessing
to the data flow, among others [11].

Figure 6. iio_backend_ops structure.

2.4.2. Local backend

The local backend is the only one that really in-
teracts with the hardware through the sysfs inter-
face of Linux kernel. Through this backend the
iio_create_local_context function creates the iio_context
object [11].

2.4.3. Network backend

The network backend characteristics are [11]:

• Allow to transmit and receive samples through the
communications network to any IIO device.

• IIO applications can run directly in computers.

• Allow the parallel processing of dataflow samples
from a device.

• Allow to run applications which require advanced
characteristics of libiio without the administrator
privileges as the local backend requires.

2.4.4. IIO Daemon

The network backend is connected to the IIO daemon
server (IIOD) which manages the incoming network con-
nections and allows remote communication to an IIO
device.

A singular feature of IIOD is that it uses the libiio
library underneath, as shown in the connections model
in Fig. 7, which is interpreted as a daemon and at the
same time is a component of the same library [11].

Figure 7. Network backend connections model.

4



DIFU100 ci@ Vol. 12, No.1, Mayo - Agosto 2018 ISSN:2007-3585

3. Development

3.1. Libiio library linking

To link the libiio library to GNU Radio it must be declared
in a CMake file as shown in Fig. 8, thus the library path
can be recognized by the GNU Radio environment.

Figure 8. CMake file for libiio linking with GNU Radio.

3.2. Context creation

Libiio works with a structure called context, which is used
to manage the device from inside its iio subsystem. This
C structure must be declared as an external structure at
the header file of the signal processing block to allow the
use of the object iio_context by GNU Radio’s runtime
environment, so it can use the create function from the
backend, which is necessary to access the low-level
functions in the subsystem.

In the context creation, the GNU Radio block of the
RF module does not use the local backend, instead,
uses the network backend with the assigned FPGA IP
address where the RF module is installed, these allow
remote connections to access data configuration and the
signals flow for transmission and reception. The remote
connection from the block is accomplished by creat-
ing the context through the iio_create_network_context
function.

3.3. RF module parameters

Fig. 2 shows the ADC and DAC devices of the RF
module to signal reception/transmission. In order to
identify the parameters and get the information needed
of the IIO subsystem it is necessary to know:

• The IP address of the RF module.

• The ADC device ID labeled as "cf-ad9643-core-lpc"
in the IIO subsystem.

• The physical channel of the ADC, labeled as "alt-
voltage0".

• The reception device ID, labeled as "adf4351-rx-
lpc".

• The reception channels IDs, labeled as "voltage0"
and "voltage1".

Once the communication with the RF Module is es-
tablished, the following parameters can be modified:
frequency, sample rate, bandwidth, buffer size and deci-
mation, as shown in Fig. 9.

Figure 9. Configuration parameters in the GNU Radio source block.

4. Results

The source block for the RF module AD-FMCOMMS1-
EBZ shown in Fig. 10 displays the data type given by
the active channel, for this block is a 16-bit Short type.

Fig. 11 shows the received spectrum in the frequency
of 887 MHz with a bandwidth of 200 MHz. There is a
slightly visible carrier signal but due to hardware limita-
tions of the RF module, the reception could be comple-
mented with additional stages such low-noise amplifiers
or high gain antenna.

As shown in Fig. 12, the IIO Oscilloscope tool from
Analog Devices shows the same spectrum as the GNU
Radio block.

5



DIFU100 ci@ Vol. 12, No.1, Mayo - Agosto 2018 ISSN:2007-3585

Figure 10. Flow graph of the AD-FMCOMMS1-EBZ board as re-
ceiver.

Figure 11. Spectrum of the received signal from the AD-
FMCOMMS1-EBZ board in the GNU Radio block.

Figure 12. Spectrum of the received signal in the Analog Devices
oscilloscope.

5. Conclusion

As seen in the section above, even with a basic con-
figuration, GNU Radio and the AD-FMCOMMS1-EBZ
evaluation board allows us to make a functional proto-
type of an SDR where is easy to modify settings like
the IP address of the RF module, the ADC, even the
physical channels using only the user interface given
by GNU Radio, but it could be handled simply by the
Linux Industrial I/O Library with a backend software pro-
grammed to do modifications automatically, given an
event.

Nowadays the IoT concept of interconnection is taking

a big relevance on the telecommunications area, so this
work may add to the experience in working with SDR’s
on this concept since the reconfiguration capabilities of
them allows to increase the range of configurations that
can be applied to a single device.

References

[1] W. Tuttlebee. (2002). Software defined radio: Enabling tech-
nologies.. New York: J. Wiley & Sons.

[2] Reinhart, Richard, “Space Communication and Navigation
SDR Testbed, Overview and Opportunity for Experiments,”
Wireless Innovation Forum Technical Conference, January
2013.

[3] Sacchi, Claudio and Passerone, Roberto and others. (2012).
A new vision of software defined radio: from academic experi-
mentation to industrial explotation,, Universitat Politècnica de
Catalunya

[4] Software Defined Radio: Past, Present, and Future - National
Instruments. (2017). Ni.com. Retrieved 25 August 2017, from
http://www.ni.com/white-paper/53706/en/

[5] Blossom, Eric and Corgan, Johnathan and Braun, Mar-
tin and Ettus, Matt and Rondeau, Tom GNU soft-
ware radio (2017). GNU project. url: http://gnuradio.
org/redmine/projects/gnuradio/wiki

[6] GNU Radio [Analog Devices Wiki]. (2017).
Wiki.analog.com. Retrieved 23 March 2017, from
https://wiki.analog.com/resources/tools-software/linux-
software/gnuradio

[7] T. Schmid, Gnu radio 802.15.4 en-and decoding Networked
& Embedded Systems Laboratory, UCLA, Technical Report
TR-UCLANESL-200609-06, June 2006.

[8] AD-FMCOMMS1-EBZ Introduction [Analog Devices Wiki].
(2017). Wiki.analog.com. Retrieved 17 March 2017, from
https://wiki.analog.com/resources/eval/user-guides/ad-
fmcomms1-ebz/introduction

[9] AD-FMCOMMS1-EBZ Functional Overview [Analog Devices
Wiki]. (2017). Wiki.analog.com. Retrieved 17 March 2017,
from https://wiki.analog.com/resources/eval/user-guides/ad-
fmcomms1-ebz/hardware/functional_overview

[10] Linux Industrial I/O Subsystem [Analog Devices Wiki].
(2017). Wiki.analog.com. Retrieved 17 January 2017, from
https://wiki.analog.com/software/linux/docs/iio/iio

[11] About libiio [Analog Devices Wiki]. (2017).
Wiki.analog.com. Retrieved 17 March 2017, from
https://wiki.analog.com/resources/tools-software/linux-
software/libiio_internals

[12] Cercueil, P. (2015). Demo. Proceedings Of The 2015 Work-
shop On Software Radio Implementation Forum - SRIF ’15.
http://dx.doi.org/10.1145/2801676.2801684

6


