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Abstract

The automation process of the pattern recognition for fragments of objects is a challenge to humanity. For humans it
is relatively easy to classify a fragment of some object even if it is isolate and maybe this identification could be
more complicated if it is partially overlapped by other object. However, the emulation of the functions of the human
eye and brain by a computer is not a trivial issue. This paper presents a pattern recognition digital system based on
Fourier binary rings mask to classify fragments of objects. The digital system is invariant to position and rotation, it
is robust in the classification of images that have noise and non-homogenous illumination, moreover it classifies
images that present an occlusion or elimination until the 15% of the area of the object.
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1. Introduction

One of the first tasks of a human being are the
identification of the objects around him or her,
therefore almost through their life, him or her will

be dedicated to recognize patterns whether by necessity
or just for curiosity. Nowadays, with almost all the pro-
duction processes automated and the fast development
of technology, the necessity to improve digital systems
for pattern classification is increasing [1]. One of the
challenge task in the pattern recognition field is to iden-

tify the pattern of the objects into images of the real
world, because into those images could be that some of
the objects are incomplete, that is, a fragment of the ob-
ject is given only or either because the objects present
occlusions or maybe they are not fully contained into the
image. Then, the problem to recognize and to classify
objects by a computer becomes a non-trivial issue. Be-
cause of this, the development of robust techniques to
identify fragments of objects is necessary.

In this paper, is proposed a digital system based on a
Fourier mask to classify fragments of objects in digital
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images. This digital system is invariant to position and
rotation, it is robust in classifying images with noise and
non-homogenous illumination. Moreover, the system
also classifies images that present an occlusion or elimi-
nation until the 15% of the area of the object. The paper
is organized as follows: In section 2, the methodology
to develop the digital system is presented. The clas-
sification framework is described in section 3. Finally,
conclusions are shown in section 4.

2. The pattern recognition digital system

2.1. The Fourier mask

The mask of a selected gray scale image I(x, y), x =

1, ..., n, y = 1, ..., n can be built by taking the imaginary
part of its Fourier transform [2], that is, Im(FT (I(x, y)));
for example, the imaginary part of the Fourier transform
of Figure 1(a) is shown in Figure 1(b). Next, the im-
age Im(FT (I(x, y))) is filtered by the binary disk mask
D(x, y),

D(x, y) =

{
1, if d((cx, cx), (x, y)) ≤ n ,
0, otherwise ,

(1)

where (cx, cx) is the center-pixel of the image and
d(p, q) is the euclidean-distance between p and q points,
thus the D(x, y) image is centered in the (cx, cx)-pixel.
Figure 1(c) presents a disk filter of diameter n and the
Im(FT (I(x, y))) is filtered by D(x, y), as shown in Figure
1(d), mathematically that operation is given by

f (x, y) = D(x, y)◦Im(FT (I(x, y))) , (2)

where ◦ means an element-wise product or
Hadamard product [3]. For the image f (x, y), 180 pro-
files of n pixels length that passes for (cx, cx) where
obtained. They are separated by ∆θ = 1◦, sampling in
this manner the entire disk. Figure 1(d) shows the zero-
degree profile P0(x). In general, the profile equations
are expressed as

Pθ(x) = f (x, y(x)) , (3)

where x = 1, ..., n, y(x) = m(x − x1) + y1, m is the
slope of y, (x1, y1) = (cx + cxcosθ, cx − cxsinθ) and
(x2, y2) = (cx + cxcos(θ + π), cx + cxsin(θ + π)) are the
two distinct end points of that line segment and θ is the
angle that y has respect to the horizontal axis in the
Cartesian plane (considering that the origin (0, 0) of the
Cartesian plane are set at the center pixel of the image
(cx, cx)).

Then, the addition of the square of the intensity values
in each profile is computed, that is,

S θ =

n∑

x=1

(Pθ(x))2 , (4)

and the profile whose sum has the maximum value
will be selected,

αβ = max0≤θ≤179{S θ} , T (x) = Pβ(x) , (5)

where β is the angle of the profile in f (x, y) whose
sum has the maximum value, hence, these profile is
called the maximum intensity profile. For example, in
Figure 1(d) is indicated the maximum intensity profile
T (x) as a dashed-black line and Figure 1(e) shows the
maximum intensity profile T (x) in the Cartesian plane.
Next, based on equation (5) the Z(x) binary function
(Figure 1(f)) is obtained,

Z(x) =

{
1, if T (x) > 0 ,
0, if T (x) ≤ 0 .

(6)

for x = cx, ..., n. Finally, taking the vertical axis x = cx

as the rotation axis, the graph of Z(x) is rotated 360◦

to obtain concentric cylinders of height one, different
widths and centered in (cx, cx) pixel. Taking a cross-
section of those concentric cylinders, the binary rings
mask associated to the given image is built. In Figure
1(g) the binary rings mask M(x, y) corresponding to the
image in Figure 1(a) is shown.

2.2. The signature

The digital system uses the modulus of the Fourier trans-
form of the image, |FT (I(x, y))|, because it is invariant to
translation [4], that is, |FT (I(x, y)) = FT (I(x + τ, y + ζ))|
and τ, ζ ∈ R, hence, the system is invariant to translation
in an easy manner. To obtain the rotational invariance,
signatures based on binary rings mask are build. The
first step is to filter the modulus of the Fourier transform
of the image by the binary rings mask. For example,
the amplitude spectrum (Figure 2(b)) of Figure 2(a) is
filtered by the binary rings mask M(x, y) (Figure 2(c)) as

H(x, y) = M(x, y) ◦ |FT (I(x, y)| . (7)

The result of equation (7) is presented in Figure 2(d).
After that, the rings in H(x, y) are enumerated from inside
to outside to obtain the following set,

Index = {ring index : ring index x ∈ n̄} , (8)
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 1. (a) Image I(x, y). (b) Imaginary part of the Fourier transform of I(x, y), that is Im(FT (I(x, y))). (c) Binary disk D(x, y). (d)
f (x, y) = D(x, y) ◦ Im(FT (I(x, y))). The solid line shows the profile P0(x) and the dashed line the profile T (x). (e) Graph of the maximum
intensity profile T (x). (f) Graph of the binary function Z(x). (g) Binary mask M(x).
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(a) (b)

(c) (d)

(e)

Figure 2. (a) Image I(x, y). (b) |FT (I(x, y))|. (c) Binary mask M(x, y).
(d) H(x, y) = M(x, y) ◦ |FT (I(x, y))|. (e) Signature of image I(x, y).

where n̄ = {1, ..., n}. The addition of the intensity
values in each ring of H(x, y) are computed to build the
function

signature = index→ A ⊂ R , (9)

signature(ring index) =
∑

H, if H(x, y)
are in the ring ring index .

Figure 2(e) show the signature constructed by the
binary rings mask M(x, y).

3. Classification

To perform the pattern recognition, first of all it is set the
signature of each image of the target images data base,
βR =

{
R j ∈ Mn×n : j = 1, . . . , k; k ∈ N

}
. Lets called S R j

to those signatures. The pattern in the target image
R j is calculated by applying the Pearsons correlation

coefficient [5]

rR j
=

max
{
CL(S R j

)
}

(N − 1)σ2
S R j

, (10)

where N is the cardinality of the domain of S R j
and

σS R j
is the standard deviation of the signature. CL rep-

resents the linear correlation of two signatures S 1 and
S 2, given by

CL(S 1, S 2) = FT−1
{
|FT (S 2)| eiφ |FT (S 1)| e−iϕ

}
, (11)

here ϕ and φ are the phases of the Fourier transform
of the signatures S 1 and S 2, respectively. The notation
CL(S 1) implies the autocorrelation function [4]. Anal-
ogously, the pattern in a problem image P, is set by
[5]

rP =
max

{
CL(S R j

, S P)
}

(N − 1)σS R j
σS P

, (12)

where S P is the signature of the problem image
and σS P

is the standard deviation of that signature. If
rP is similar to rR j

, therefore P and R j are the same,
otherwise they are different.

To show that the signatures are invariant to rotation
an experiment was conducted. Two pictures of the
same object at different rotation angle were taken with a
Panasonic camera, model Lumix DMC-FP3, the images
were named I1(x, y) and I2(x, y) (Figure 3(a) and Figure
3(b) respectively). Figure 3(d) shows the signatures
of I1(x, y) and I2(x, y) in dashed line and dashed line
with asterisks respectively; In order to explain clarity,
only the values of the outer rings are shown. As it is
expected, both curves are practically the same, the
small difference appears from the computers intrinsic
round-off error due to the floating-point computation. On
the other hand, when the image I1(x, y) is rotated by a
computer the sawtooth noise is presented like in Figure
3(c). That noise affects the signature of the image, as
it is shown in Figure 3(d), where the dashed line with
squares has the same trend like the dashed line but the
values in some ring index are different. Therefore, when
the images samples are taken in a microscope or in a
digital camera, the signatures remain the same does
not matter the rotation angle of the object.

To classify fragments of objects, the system will be
trained using 150 images of each reference image R j :
50 images without randomly 5% of the area of the ob-
ject, 50 without 10% and 50 without 15%. Then, their
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(a) (b) (c)

(d)

Figure 3. (a) Image I1(x, y). (b) Image I2(x, y). (c) Image I3(x, y). (d) The S I1 , S I2 and S I3 are the signatures of the images I1(x, y), I2(x, y) and
I3(x, y), respectively.

corresponding Pearsons correlation coefficient rk, k =

1, ..., 150 were obtained. Because of {rk, k = 1, ..., 150}
does not have a normal distribution, those values are
normalised by the Z-Fisher transform to get the confi-
dence interval for the correlation values [5]. The Z-Fisher
value for rk

R j
is given by

Zrk
R j

= 1.1513 ln


1 + rk

R j

1 − rk
R j

 . (13)

Thus, the 95% confidence interval for Zrk
R j

is

[
Z
−
rk

R j

,Z
+

rk
R j

]
=

[
Zrk

R j
− 1.96σZ , Zrk

R j
+ 1.96σZ

]
, (14)

with a standard deviation of σZ = 1√
n−3

and n = 151
the size of the sample. Hence, the confidence interval
for the correlation coefficient ρrk

R j
is

ρ
−
rk

R j

≤ ρrk
R j
≤ ρ+

rk
R j

, (15)

where

ρ
−
rk

R j

=

exp
(
2Z

−
rk

R j

)
− 1

exp
(
2Z−

rk
R j

)
+ 1

, ρ
+

rk
R j

=

exp
(
2Z

+

rk
R j

)
− 1

exp
(
2Z+

rk
R j

)
+ 1

. (16)

For R j there are 151 values of ρ
−
rk

R j

and another 151

values for ρ
+

rk
R j

then the confidence interval of 95% to

decide if a problem image and R j are the same is given
by

[
min

1≤k≤151

{
ρ
−
rk

R j

}
, max

1≤k≤151

{
ρ

+

rk
R j

}]
. (17)

The digital system by Fourier mask was tested using,
as target images database, 18 gray scale digital images
of diatoms fossil. Those images were selected because
of their similarity in their morphology. The problem
images database has 2700 images (50 images of each
diatom without randomly 5%, 10% and 15% of the area
of the object). The digital system in Figure 4 classifies
the problem images with a confidence level of 95%.

The same procedure presented in this work was pre-
viously performed using the Bessel binary rings mask
[6] obtaining that the Bessel mask system recognize
objects which have 15% of occlusion, but the Fourier
mask digital system is a better option, because it is ro-
bust in the classification of images that have noise (like
Gaussian additive noise or salt and pepper noise) and
non-homogeneous illumination. A similar digital system
was presented in [2], essentially the difference between
that work and this; it is that the step for the classification
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Figure 4. Pattern recognition digital system.

of the images is not achieved in [2]. In there, the confi-
dence level of the system is determined by the boxplot
technique. Here, by the Z-Fisher transform the classi-
fication step is obtained and a Matlab application was
developed to classify fossil diatom digital images. More-
over, this system also classifies images that present
fragments of objects.

4. Conclusions

The digital system presented in this work has a confi-
dence level of 95% in the classification of gray scale
images, which is an excellent performance. The images
to be identified could have a translation and rotation of
the object, noise, non-homogenous illumination and the
occlusion or elimination of a fragment until 15% in the
area of the object.
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