A Full Analytical Solution to the Direct and Inverse Kinematics of the Pentaxis Robot Manipulator

Moisés Estrada Castañeda, Luis Tupak Aguilar Bustos, Luis A. González Hernández
Instituto Politécnico Nacional - Centro de Investigación y Desarrollo de Tecnología Digital Av. Instituto Politécnico Nacional No. 1310, Mesa de Otay, Tijuana, B.C., México, 22510.
mestradac1304@alumno. ipn. mx laguilarb@ipn. mx lgonzal@citedi. mx
2014 Published by $\mathcal{D I F} \mathcal{U}_{100} c i @$ http://nautilus.uaz.edu. mx/difu100cia

Abstract

In this paper, the kinematics of a 5-DOF robot manipulator was obtained. The direct kinematics was presented using the Denavit-Hartenberg convention and method. The inverse kinematics was obtained analytically and all possible solutions were found for each joint. The kinematic solution was verified experimentally by programming a kinematic solver for the Movelt! ROS ${ }^{\circledR}$ platform.

Keywords: Kinematics, Robot Manipulator, 5-DOF, ROS

1. Introduction

The PENTAXIS robot was developed in Centro de Investigación y Desarrollo de Tecnología Digital (CITEDI-IPN) in 1994 for industrial and educational purposes and since then has been acquired by other research Institutes in the region. Computation of direct and inverse kinematics plays an important role in trajectory generation, path or motion planning, position, and motion control of fully-actuated robots [1, 2].

The direct-kinematics consists in finding the basecoordinates of the end effector of the robot given the joint variables. The inverse-kinematics problem is opposite to the direct-kinematics problem, that is, it consists in determining the joint variables of a robot given the orientation and posture for the end effector in base coor-
dinates [3].
There exist many methods to find the direct kinematics. For a robot with few joints (up to three), the direct kinematics can be analytically obtained. For a robot with higher degrees-of-freedom, the Denavit-Hartenberg method [4] becomes suitable. On the other hand, the computation of the inverse kinematics is more complicated since several solutions (posture) can be obtained. There exist several softwares that find or solve the inverse-kinematics problem as the default kinematic solver in Moveit! from ROS ${ }^{\circledR}$ [5] however, a solution cannot be found for certain Cartesian trajectories.

The contribution of this work is towards a construction of a software platform for the PENTAXIS under ROS ${ }^{\circledR}$ where it will help to program and record industrial tasks as path planning contouring, and peak-and-place opera-

Figure 1. Coordinate frames for the PENTAXIS robot.

Figure 2. The PENTAXIS 5-DOF manipulator.
tions.

2. Anatomy of the Pentaxis Robot

The PENTAXIS is a 5-DOF robot manipulator with its joints of type revolute. When the robot is at its vertical pose, it will reach a height of $106 \pm 0.05 \mathrm{cms}$ if measured from its base to the tip of its end-effector which is a gripper. Every joint, including the end-effector, is driven by a stepper motor. The coordinate frames for the manipulator is shown in Fig. 1.

3. Forward Kinematics

The Denavit-Hartenberg (D-H) convention was used to derive the direct kinematics. The direct kinematics is a set of equations which is used to calculate the position and orientation of the end-effector from a given joint values by applying the D-H method to the coordinate frames depicted in Fig. 1. The D-H parameters are shown in Table 1.

The transformation matrix between two consecutive frames, denoted as \boldsymbol{T}, is composed of the multiplication of the following homogeneous transformations matrices,

Table 1. The D-H parameters of the PENTAXIS robot.

Frame $_{i}$	θ_{i}	$\left(d_{i} \pm 0.05\right) \mathbf{c m s}$	$\left(a_{i} \pm 0.05\right) \mathbf{c m s}$	$\alpha_{i} \mathbf{d e g}$
0	-	15.2	0	0
1	θ_{1}	25.9	0	-90
2	θ_{2}	0	25.2	0
3	θ_{3}	0	25.0	0
4	θ_{4}	0	0	90
5	θ_{5}	3.5	0	0
6	-	12.1	0	0

denoted as \boldsymbol{A}_{i} :

$$
\begin{align*}
& \boldsymbol{A}_{i}=\operatorname{Rot}\left(z, \theta_{i}\right) \cdot \operatorname{Trans}\left(0,0, d_{i}\right) \cdot \operatorname{Trans}\left(a_{i}, 0,0\right) \cdot \mathbf{R o t}\left(x, \alpha_{i}\right) \\
& =\left(\begin{array}{cccc}
\cos \left(\theta_{i}\right) & -\sin \left(\theta_{i}\right) \cos \left(\alpha_{i}\right) & \sin \left(\theta_{i}\right) \sin \left(\alpha_{i}\right) & a_{i} \cos \left(\theta_{i}\right) \\
\sin \left(\theta_{i}\right) & \cos \left(\theta_{i}\right) \cos \left(\alpha_{i}\right) & -\cos \left(\theta_{i}\right) \sin \left(\alpha_{i}\right) & a_{i} \sin \left(\theta_{i}\right) \\
0 & \sin \left(\alpha_{i}\right) & \cos \left(\alpha_{i}\right) & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right) \tag{1}
\end{align*}
$$

where $\boldsymbol{\operatorname { R o t }}\left(z, \theta_{i}\right)$ denotes the rotation of θ_{i} around the z axis, $\operatorname{Trans}\left(0,0, d_{i}\right)$ is the translation of d_{i} length, $\operatorname{Trans}\left(a_{i}, 0,0\right)$ is the translation of a_{i} length, and $\boldsymbol{\operatorname { R o t }}\left(x, \alpha_{i}\right)$ denotes the rotation of α_{i} around the x axis. For the PENTAXIS robot, the transformation matrix from the base (frame 0) to the final effector (frame 6) is specifically expressed as

$$
\boldsymbol{T}_{6}^{0}=\prod_{i=0}^{6} \boldsymbol{A}_{i}=\left(\begin{array}{cccc}
n_{x} & o_{x} & a_{x} & p_{x} \tag{2}\\
n_{y} & o_{y} & a_{y} & p_{y} \\
n_{z} & o_{z} & a_{z} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right), \quad \boldsymbol{n}=\left(\begin{array}{ccc}
n_{x} & o_{x} & a_{x} \\
n_{y} & o_{y} & a_{y} \\
n_{z} & o_{z} & a_{z}
\end{array}\right) .
$$

Here, $\boldsymbol{p}=\left[\begin{array}{lll}p_{x} & p_{y} & p_{z}\end{array}\right]^{T} \in \mathbb{R}^{3}$ is the position vector and \boldsymbol{n} is the 3×3 orientation matrix of the end-effector. The following set of equations are regarded as the direct kinematics for the PENTAXIS robot:

$$
\begin{align*}
n_{x} & =c_{234} c_{1} c_{5}-s_{1} s_{5} \tag{3}\\
n_{y} & =c_{234} s_{1} c_{5}+c_{1} s_{5} \tag{4}\\
n_{z} & =-s_{234} c_{5} \tag{5}\\
o_{x} & =-c_{234} c_{1} s_{5}-s_{1} c_{5} \tag{6}\\
o_{y} & =-c_{234} s_{1} s_{5}+c_{1} c_{5} \tag{7}\\
o_{z} & =s_{234} s_{5} \tag{8}\\
a_{x} & =s_{234} c_{1} \tag{9}\\
a_{y} & =s_{234} s_{1} \tag{10}\\
a_{z} & =c_{234} \tag{11}\\
p_{x} & =c_{1}\left[a_{2} c_{2}+a_{3} c_{23}+\left(d_{5}+d_{6}\right) s_{234}\right] \tag{12}\\
p_{y} & =s_{1}\left[a_{2} c_{2}+a_{3} c_{23}+\left(d_{5}+d_{6}\right) s_{234}\right] \tag{13}\\
p_{z} & =d_{0}+d_{1}-a_{2} s_{2}-a_{3} s_{23}+\left(d_{5}+d_{6}\right) c_{234} \tag{14}
\end{align*}
$$

where $c_{i}=\cos \left(\theta_{i}\right), s_{i}=\sin \left(\theta_{i}\right), c_{i j}=\cos \left(\theta_{i}+\theta_{j}\right), s_{i j}=$ $\sin \left(\theta_{i}+\theta_{j}\right), c_{i j k}=\cos \left(\theta_{i}+\theta_{j}+\theta_{k}\right)$, and $s_{i j k}=\sin \left(\theta_{i}+\theta_{j}+\theta_{k}\right)$.

4. Inverse Kinematics

The analytic inverse kinematics consists of finding θ_{1} to θ_{5} algebraically from the set equations (3)-(14).

4.1. Solutions for θ_{1}

4.1.1. First solution

From equations (12) and (13) the following solution is obtained:

$$
\begin{equation*}
\theta_{1}=\operatorname{atan} 2\left(\frac{p_{y}}{p_{x}}\right) \tag{15}
\end{equation*}
$$

4.1.2. Second solution

A second solution for θ_{1} can be obtained from (10) and (9), that is,

$$
\begin{equation*}
\theta_{1}=\operatorname{atan} 2\left(\frac{a_{y}}{a_{x}}\right) \tag{16}
\end{equation*}
$$

4.1.3. Third solution

Another solution may be derived, from equations (3) and (7) we first solve them for $s_{1} s_{5}$, equate them, then substitute c_{234} from (11) and finally solve for $c_{1} c_{5}$ we have:

$$
\begin{equation*}
c_{1} c_{5}=\frac{o_{y}-a_{z} n_{x}}{1-a_{z}^{2}} \tag{17}
\end{equation*}
$$

Similar to (17), it is possible to obtain the following relation by now taking into account (4) and (6):

$$
\begin{equation*}
s_{1} c_{5}=\frac{-o_{x}-a_{z} n_{y}}{1-a_{z}^{2}} \tag{18}
\end{equation*}
$$

Therefore, dividing (18) by (17) and solving for θ_{1} we have a third solution:

$$
\begin{equation*}
\theta_{1}=\operatorname{atan} 2\left(\frac{-o_{x}-a_{z} n_{y}}{o_{y}-a_{z} n_{x}}\right) \tag{19}
\end{equation*}
$$

4.1.4. Fourth solution

A fourth solution may be obtained by applying a similar method for this last solution. Starting from (7) and (3), solving them for $c_{1} c_{5}$, equate them, substitute c_{234} from (11) and finally solve for $s_{1} s_{5}$ we have:

$$
\begin{equation*}
s_{1} s_{5}=\frac{n_{x}-a_{z} o_{y}}{a_{z}^{2}-1} \tag{20}
\end{equation*}
$$

We derive a similar equation as (20), by now taking into account (6) and (4) we have:

$$
\begin{equation*}
c_{1} s_{5}=\frac{-n_{y}-a_{z} o_{x}}{a_{z}^{2}-1} \tag{21}
\end{equation*}
$$

Dividing (20) by (21) and solving for θ_{1} we have the fourth solution:

$$
\begin{equation*}
\theta_{1}=\operatorname{atan} 2\left(\frac{n_{x}-a_{z} o_{y}}{-n_{y}-a_{z} o_{x}}\right) \tag{22}
\end{equation*}
$$

4.1.5. Fifth solution

From equations (3) and (6) we solve for c_{234} and then equate them, thus:

$$
\begin{equation*}
s_{1}=\frac{-s_{5} n_{x}-c_{5} o_{x}}{2} \tag{23}
\end{equation*}
$$

similarly from equations (4) and (7) we have:

$$
\begin{equation*}
c_{1}=\frac{s_{5} n_{y}+c_{5} o_{y}}{2} \tag{24}
\end{equation*}
$$

Therefore from the previous two equations the fifth solution is obtained:

$$
\begin{equation*}
\theta_{1}=\operatorname{atan} 2\left(\frac{-s_{5} n_{x}-c_{5} o_{x}}{s_{5} n_{y}+c_{5} o_{y}}\right) \tag{25}
\end{equation*}
$$

In this last solution there is a dependency on θ_{5}, however there are solutions for θ_{5} in which there is no dependence on any other unknown variable, as it is shown further in this document.

4.1.6. Sixth solution

When the arm of the robot is at the upright position the above solutions will have a "zero by zero division". To avoid such singularity we set θ_{5} to zero, therefore another solution is derived. From Eqs. (6) and (7) we have the following:

$$
s_{1}=-o_{x}, \quad c_{1}=o_{y},
$$

therefore solution six is:

$$
\begin{equation*}
\theta_{1}=\operatorname{atan} 2\left(\frac{-o_{x}}{o_{y}}\right) \tag{26}
\end{equation*}
$$

4.2. Solutions for θ_{5}

4.2.1. First solution

From equations (8) and (5) we easily find the first solution for θ_{5} :

$$
\begin{equation*}
\theta_{5}=\operatorname{atan} 2\left(-\frac{o_{z}}{n_{z}}\right) \tag{27}
\end{equation*}
$$

4.2.2. Second solution

Equations (3) and (7) are solved for $c_{1} c_{5}$, equating them, substituting c_{234} from (11) and solving for $s_{1} s_{5}$ we have:

$$
\begin{equation*}
s_{1} s_{5}=\frac{o_{y} a_{z}-n_{x}}{1-a_{z}^{2}} \tag{28}
\end{equation*}
$$

Analogously to the last equation we derive a second one, by now taking into account (6) and (4) we have:

$$
\begin{equation*}
s_{1} c_{5}=\frac{-o_{x}-a_{z} n_{y}}{1-a_{z}^{2}} \tag{29}
\end{equation*}
$$

Dividing (28) by (29) and solving for θ_{2} we have the second solution:

$$
\begin{equation*}
\theta_{5}=\operatorname{atan} 2\left(\frac{o_{y} a_{z}-n_{x}}{-o_{x}-a_{z} n_{y}}\right) . \tag{30}
\end{equation*}
$$

4.2.3. Third solution

The derivation of the third solution for θ_{3} is very similar from this last solution. From (7) we solve for $s_{1} s_{5}$, substitute that result into (3) and finally solve for $c_{1} c_{5}$, we have:

$$
\begin{equation*}
c_{1} c_{5}=\frac{n_{x} a_{z}+o_{y}}{a_{z}^{2}-1} . \tag{31}
\end{equation*}
$$

From (6) we solve for $s_{1} c_{5}$, substituting that result into (4) and finally solving for $c_{1} s_{5}$, we have:

$$
\begin{equation*}
c_{1} s_{5}=\frac{-n_{y}-a_{z} o_{x}}{a_{z}^{2}-1} \tag{32}
\end{equation*}
$$

Dividing (32) by (31) and solving for θ_{5} we finally have the third solution:

$$
\begin{equation*}
\theta_{5}=\operatorname{atan} 2\left(\frac{-n_{y}-a_{z} o_{x}}{o_{y}+a_{z} n_{x}}\right) \tag{33}
\end{equation*}
$$

4.2.4. Fourth solution

From equations (3) and (4) we solve for c_{234} and then equate them, thus:

$$
\begin{equation*}
s_{5}=\left(\frac{c_{1} n_{y}-s_{1} n_{x}}{2}\right), \tag{34}
\end{equation*}
$$

similarly from equations (6) and (7) we have:

$$
\begin{equation*}
c_{5}=\left(\frac{c_{1} o_{y}-s_{1} o_{x}}{2}\right) \tag{35}
\end{equation*}
$$

Therefore solution four is derived:

$$
\begin{equation*}
\theta_{5}=\left(\frac{c_{1} n_{y}-s_{1} n_{x}}{c_{1} o_{y}-s_{1} o_{x}}\right) \tag{36}
\end{equation*}
$$

4.3. Solutions for θ_{3}

From Eqs. (12)-(14) the following terms may be derived:

$$
\begin{equation*}
a_{2} c_{2}+a_{3} c_{23}=\Gamma, \quad a_{2} s_{2}+a_{3} s_{23}=\Omega \tag{37}
\end{equation*}
$$

where Γ is any of the following terms derived from the combination of (12) and (13) with (5), (8), (9), (10):

$$
\begin{aligned}
\Gamma & =\frac{p_{x}}{c_{1}}+\left(d_{5}+d_{6}\right) \frac{n_{z}}{c_{5}}=\frac{p_{x}}{c_{1}}-\left(d_{5}+d_{6}\right) \frac{o_{z}}{s_{5}} \\
& =\frac{p_{x}}{c_{1}}-\left(d_{5}+d_{6}\right) \frac{a_{x}}{c_{1}}=\frac{p_{x}}{c_{1}}-\left(d_{5}+d_{6}\right) \frac{a_{y}}{s_{1}} \\
& =\frac{p_{y}}{s_{1}}+\left(d_{5}+d_{6}\right) \frac{n_{z}}{c_{5}}=\frac{p_{y}}{s_{1}}-\left(d_{5}+d_{6}\right) \frac{o_{z}}{s_{5}} \\
& =\frac{p_{y}}{s_{1}}-\left(d_{5}+d_{6}\right) \frac{a_{x}}{c_{1}}=\frac{p_{y}}{s_{1}}-\left(d_{5}+d_{6}\right) \frac{a_{y}}{s_{1}},
\end{aligned}
$$

and Ω is any of the following terms derived from the combination of (14) with (3), (4), (6), (7), (11):

$$
\begin{aligned}
\Omega & =\epsilon+\left(d_{5}+d_{6}\right) \frac{n_{x}+s_{1} s_{5}}{c_{1} c_{5}}=\epsilon+\left(d_{5}+d_{6}\right) \frac{n_{y}-c_{1} s_{5}}{s_{1} c_{5}}, \\
& =\epsilon+\left(d_{5}+d_{6}\right) \frac{-o_{x}-s_{1} c_{5}}{c_{1} s_{5}}=\epsilon+\left(d_{5}+d_{6}\right) \frac{-o_{y}+c_{1} c_{5}}{s_{1} s_{5}} \\
& =\epsilon+\left(d_{5}+d_{6}\right) a_{z},
\end{aligned}
$$

here $\epsilon=d_{0}+d_{1}-p_{z}$.
The square of the sum of Eqs. (37) will give us:

$$
\begin{equation*}
a_{2}^{2}+2 a_{2} a_{3}\left(c_{2} c_{23}+s_{2} s_{23}\right)+a_{3}^{2}=\Gamma^{2}+\Omega^{2} . \tag{38}
\end{equation*}
$$

Because $c_{2} c_{23}+s_{2} s_{23}=c_{3}$, we can write:

$$
c_{3}=\left(\frac{\Gamma^{2}+\Omega^{2}-a_{2}^{2}-a_{3}^{2}}{2 a_{2} a_{3}}\right), \quad s_{3}= \pm \sqrt{1-c_{3}^{2}}
$$

In the above equation, we interpret the positive square root for when the robot elbow (joint 3) is up and the negative for when the elbow is down. Thus we have:

$$
\begin{equation*}
\theta_{3}=\operatorname{atan} 2\left(\frac{ \pm \sqrt{1-c_{3}^{2}}}{\left(\frac{\Gamma^{2}+\Omega^{2}-a_{2}^{2}-a_{3}^{2}}{2 a_{2} a_{3}}\right)}\right) \tag{39}
\end{equation*}
$$

4.4. Solutions for θ_{2}

From the preceding Subsection, Eqs. (37) may be expressed as follows:
$\left(a_{2}+a_{3} c_{3}\right) c_{2}-\left(a_{3} s_{3}\right) s_{2}=\Gamma, \quad\left(a_{3} s_{3}\right) c_{2}+\left(a_{2}+a_{3} c_{3}\right) s_{2}=\Omega$.
From above equations, we may find a solution for s_{2} and c_{3}, and the combination of those solutions yield:

$$
\begin{equation*}
\theta_{2}=\operatorname{atan} 2\left(\frac{\left(a_{2}+a_{3} c_{3}\right) \Omega-\left(a_{3} s_{3}\right) \Gamma}{\left(a_{2}+a_{3} c_{3}\right) \Gamma+\left(a_{3} s_{3}\right) \Omega}\right) \tag{41}
\end{equation*}
$$

Figure 3. Flowchart of the Inverse Kinematic algorithm.

4.5. Solutions for θ_{4}

The solution of θ_{4} can be straightforwardly found from the set of Eqs.

$$
\begin{equation*}
s_{234}=s_{23} c_{4}+c_{23} s_{4}, \quad c_{234}=c_{23} c_{4}-s_{23} s_{4} \tag{42}
\end{equation*}
$$

where variables θ_{2}, θ_{3} are known. By means of the many algebraic methods for solving linear equations, we find an equation for s_{4} and another for c_{4}, dividing them yields:

$$
\begin{equation*}
\theta_{4}=\operatorname{atan} 2\left(\frac{c_{23} s_{234}-s_{23} c_{234}}{s_{23} s_{234}+c_{23} c_{234}}\right) \tag{43}
\end{equation*}
$$

Here, c_{234} and s_{234} is given by:

$$
\begin{aligned}
c_{234} & =\frac{n_{x}+s_{1} s_{5}}{c_{1} c_{5}}=\frac{n_{y}-c_{1} s_{5}}{s_{1} c_{5}}=\frac{-o_{x}-s_{1} c_{5}}{c_{1} s_{5}}=a_{z} \\
& =\frac{-o_{y}+c_{1} c_{5}}{s_{1} s_{5}}=\frac{\left[p_{z}-\left(d_{0}+d_{1}\right)+a_{2} s_{2}+a_{3} s_{23}\right]}{d_{5}+d_{6}} \\
s_{234} & =-\frac{n_{z}}{c_{5}}=\frac{o_{z}}{s_{5}}=\frac{1}{d_{5}+d_{6}}\left(\frac{p_{x}}{c_{1}}-a_{2} c_{2}-a_{3} c_{23}\right) \\
& =\frac{a_{x}}{c_{1}}=\frac{a_{y}}{s_{1}}=\frac{1}{d_{5}+d_{6}}\left(\frac{p_{x}}{s_{1}}-a_{2} c_{2}-a_{3} c_{23}\right) .
\end{aligned}
$$

5. Implementation and experimental results

In order to test our results we created a Movelt! Kinematics Plugin [6] for the ROS platform, then four different Cartesian paths was given for the robot's end effector to
follow. The flowchart that represents the implemented algorithm for the inverse kinematics is shown in figure 3. We have let out the forward kinematics flowchart algorithm since its implementation is straightforward. A video has been recorded showing the robot following four paths: a rectangle, a circle, an ellipse, and a sine function. These paths were not possible to be calculated by the Movelt! Motion Planner while using the default kinematic solver (the KDL kinematics numeric solver). The video is available in the following URL: https://www. youtube.com/watch?v=Gl_mZR0w330.

6. Conclusions

This document presents the forward and inverse kinematics of a 5-DOF robot manipulator. The forward kinematics was derived using the Denavit-Hartenberg notation, where a set of twelve equations were obtained. For the inverse kinematics many solutions were given for each joint, for which in some cases there will be redundancy and for other cases there is only a unique solution. The implementation for the direct kinematics is straightforward. However there may be many kinds of implementations for the inverse kinematics. In this paper, we used a backtrack kind algorithm, then from the set of solutions that were obtained, a comparison with the forward kinematics would indicate the correct one. This implementation of an analytic kinematic solver is novel in regards that it deals with redundancy and singularities, and also it is fast enough to come up with the solution so that the end user is able to interact with the ROS ${ }^{\circledR}$'s Rviz visualizer in real time.

References

[1] Reza N. Jazar. "Theory of Applied Robotics. Kinematics, Dynamics, and Control", Springer, 2nd Edition, 2010.
[2] J. Q. Gan, E. Oyama, E. M. Rosales and H. Hu. "A complete analytical solution to the inverse kinematics of the Pioneer 2 robotic arm", Robotica, Cambridge University Press, Vol. 23, pages 123-129, 2005.
[3] F. L. Lewis, D. M. Dawson and C. T. Abdallah, "Robot Manipulator Control: Theory and Practice", Marcel Dekker, 2nd Edition, New York, 2006.
[4] L. Sciavicco and B. Siciliano, "Modeling and Control of Robot Manipulators", Springer, 2nd Edition, 2010.
[5] I. A. Sucan and S. Chitta, "Movelt!", http://moveit.ros.org, April 2014.
[6] I. A. Sucan and S. Chitta, "Movelt!", http://moveit.ros. org/wiki/Kinematics/Custom_Plugin, April 2014.
[7] D. Xu, C. A. Acosta Calderon, J. Q. Gan and H. Hu. "An Analysis of the Inverse Kinematics for a 5-DOF Manipulator", International Journal of Automation and Computing, Vol. 2, pages 114-124, 2005.

