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Abstract

The implementation of parallel genetic algorithms on a graphic processor GPU to solve the Travelling Salesman
Problem instances is presented. Two versions of parallel genetic algorithms are implemented, a Parallel Genetic
Algorithm with Islands Model and a Parallel Genetic Algorithm with Elite Island; the two versions were executed
on a GPU. In both cases, each individual is represented by a thread, and each island is represented by a block of
threads. The main feature of the Parallel Genetic Algorithm with Elite Island in this work is that there is not migration
between islands, instead, an Elite Island is created with the best individuals from each of the islands to share the
best individuals. The individual with minimal fitness function is the sought solution. The results show that the Elite
Island model is better than the island model with migration of individuals.
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1. Introduction

The Travelling Salesman Problem (TSP) is a typ-
ical representative of a large class of problems
known as combinatorial optimization problems.

The study of combinatorial optimization problems is of
great importance from a theoretical and practical point
of view. These problems are presented in real-world
situations, such as routing and scheduling, belonging
to NP-complete and NP-hard problems. Among them,
TSP is one of the most important, since it is very easy to
describe, but has an extremely large search space and
is very difficult to solve, it is probably the most studied

combinatorial optimization problem and has become a
standard testbed for new algorithmic ideas. Genetic Al-
gorithms (GAs) are efficient search methods based on
the biological principles of natural selection and genetics.
They are being applied successfully to find acceptable
solutions to problems in business, engineering, and sci-
ence [1]. As occurs in nature, GAs are based on the
survival of the fittest individuals in a population. The
GA starts with an initial population that evolves from
one generation to another, through the creation of new
individuals with better fitness values and elimination of
individuals with low fitness values. In GAs the popu-
lations evolves by applying genetic operators such as
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selection, crossover and mutation, whose functionality
and implementation depends on the problem to solve.
One of the main features of the genetic algorithm is its
ease of parallelization, since they are based on popu-
lations of independent individuals, thereby calculating
the fitness function and the results of genetic operators
of an individual not depend on the calculation of other
individuals [2].

Typically the initial population is generated randomly
with an uniform probability distribution. The initial pop-
ulation size is important because it influences whether
the GA can find good solutions and the time it takes
to reach them. If the population is too small, it may
not be an adequate sample of the search space, and
it will be difficult to identify good solutions [3]. If the
population is too large, it is necessary to use a lot of
computational resources and processing time. In each
iteration of the GA a new population of individuals is
created on the basis of their predecessors, having more
chance to reproduce those with better fitness function.
GAs are generally able to find good solutions of com-
binatorial optimization problems in a reasonable time,
but as applied to the hardest and biggest problems an
increase in the time required to find adequate solutions
occurs. Consequently, there have been many efforts to
implement faster GAs, and one of the most promising
alternatives is to use parallel implementations, which
can obtain a substantial reduction of processing time.
In recent years the development of powerful graphics
processors has had a major boost, as a result we may
have computing platforms with high performance and
low cost.

While the first implementations of parallel GAs were
designed for multi-core CPUs, clusters, and grids (e.g.
ParadisEO [4]), with current Graphics Processing Units
(GPU) there exist another parallel architecture, offering
a high degree of parallelism and huge amounts of com-
putational power. As a consequence, it seems natural
to employ GPUs for parallel GAs. Most of the work up
to now focuses on implementing GAs on older GPUs;
even using the graphics hardware of previous genera-
tions, some claim to achieve speedups higher than 1000
when comparing their GPU implementations to normal
CPUs. However, Speedups of this magnitude can only
be achieved by comparing optimized GPU code to poor
CPU implementations [5].

In this paper two versions of parallel genetic al-
gorithms were implemented on a GPU to solve the
TSP, a Parallel Genetic Algorithm with Island Model
(PGAIM) and a Parallel Genetic Algorithm with Elite Is-
land (PGAEI), those already were used in [6] to solve
the problem of approximation of NURBS curves to a set

of points of a medical image. A comparison between
them is done in terms of the best solution and time.

2. Traveling Salesman Problem

The TSP is to find a Hamiltonian tour of minimal length
on a fully connected graph. The TSP is a well-known
NP-complete problem, thus, there is no polynomial algo-
rithm to find the optimal result [7]. Heuristic algorithms
for the TSP can be broadly divided into two classes: tour
construction procedures, which build a tour by succes-
sively adding a new node at each step, for example Ant
Colony Optimization [8]; and tour improvement proce-
dures, which start from an initial tour and seek a better
one by iteratively moving from one solution to another,
according to adjacency relationships defined by a given
neighborhood structure, for example GA, this approach
was used in this work. The goal in the TSP is to find a
minimum length Hamiltonian tour, where a Hamiltonian
tour is a closed path visiting each of n nodes of a graph
G exactly once. Thus, an optimal solution to the TSP
is a permutation of the nodes index 1, 2, . . . , n such that
the length f (π) is minimal, where f (π) is given by

f (π) =

n−1∑

i=1

dπ(i)π(i+1) + dπ(n)π(1) (1)

where dπ(i)π(i+1) is the distance between nodes i and i+1
and dπ(n)π(1) is the distance between node n and the first
node.

In general, the TSP includes two different kinds of
problems, the Symmetric TSP and the Asymmetric TSP.
In the symmetric form there is only one way between two
adjacent cities, i.e., the distance between cities A and B
is equal to the distance between cities B and A, while in
the asymmetric form there is not such symmetry and it
is possible to have two different distances between two
cities. The number of tours in the ATSP and STSP on n
vertex (cities) is (n − 1)! and (n − 1)!/2, respectively.

3. Parallel genetic algorithms

Parallel genetic algorithms arise from the need of com-
putation required for extremely complex problems whose
running time using sequential genetic algorithms is a
limitation [9]. The implementation of parallel genetic
algorithms aims to break a problem into several sub-
problems and solve them simultaneously on multiple
processors, which improves the performance and quality
of search of genetic algorithms. In general, the behavior
of parallel algorithms is the same as in the sequential
algorithms. However this is not necessarily the case
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of the parallel genetic algorithms. In the structure of a
task, parallel genetic algorithms can be divided into sub-
tasks so that there is a balanced distribution of activities;
members of the populations of a genetic algorithm can
be divided into sub-populations that are distributed on
different processors through communication and control
mechanisms that help to generate a solid structure at
the level of genetic algorithms in a parallel environment.
There are several ways to parallelize a genetic algorithm.
The first and most intuitive is the global, which is basi-
cally to parallelize the evaluation of the fitness function
of individuals holding a single stock. A better option
for parallelization of genetic algorithm is to divide the
population into subpopulations that evolve separately
and exchange individuals every few generations [9]. The
following describes each of the stages of a genetic algo-
rithm.

3.1. Individual representation

An important consideration that must be taken into ac-
count when designing a GA is to define a representation
for individuals in the population that model the solution
of the problem [2]. Individuals are represented by the
chromosome that contains a gene vector symbolizing
the data we want to optimize. In this work each individual
represents a tour.

3.2. Fitness Funtion

The fitness function determines the potential of the so-
lution that individuals have within the population [2]. In
this work, the cost function which represents the fitness
function is given by Eq. (1) and the goal of the genetic
algorithm is to minimize this cost function.

3.3. Genetic operators

3.3.1. Selection operator

Selection is the process of choosing two parents from
the population for crossover [2]. The selection operator
produces new points in the search space, it determines
which individual will leave offspring for the next genera-
tion. There are various selection methods used in GAs,
such as roulette selection, tournament selection, and
fitness proportional. In this paper a tournament selec-
tion is implemented, in which randomly chooses a small
sample of the population and it is selected the individ-
ual with best fitness value. For PGAIM an individual
from the same island is selected and in the case of the
PGAEI an individual from same island or Elite Island is
selected. In both cases only one individual is selected

to be crossed and the other individual is defined by the
thread, because in both algorithms each individual is
assigned to a thread on the GPU.

3.3.2. Crossover operator

The genetic crossover operator is used to improve in-
dividuals of the population. To perform the crossover
operation, two individuals are selected to be combined
and the resulting individual has the ability to replace one
of the parents or the individual with the worst fitness in
the population [2]. The new individual will replace a par-
ent provided that have better fitness function. If the new
individual is not better than parents can try to replace
the worst individual in the population. The process is
aimed at the sub-regions of the search space, where it
is assumed that there is an better solution. There are
several ways to apply the crossover operator such as
crossing a single point, multi-point crossover, uniform
crossover, among others. In this work, each individual
in the population makes cross with another individual
chosen by the selection operator in each iteration and
cross used by two points, where two positions in the
chain of genes on the chromosomes of both parents are
selected randomly. One parent provides information that
is outside the range between the two positions and the
other provides the information that is provided in the two
positions.

3.3.3. Mutation operator

The mutation operator creates an individual performing
some type of alteration, usually small, on an individual
of the population chosen randomly. The mutation is in-
tended to disperse the search algorithm as it gives rise
to individuals with new genetic material. In this paper,
the process of mutation used is by inversion where two
positions of individual chromosomes are randomly se-
lected and chromosome genes of the individual that fall
into these two positions are inverted.

4. Implementation of parallel genetic algorithms on
a GPU

This section described in detail the two versions of par-
allel genetic algorithms that have been implemented on
a GPU. Importantly, the number of threads is equal to
the number of individuals because each individual in the
population is mapped to a GPU thread and each island
is mapped to a GPU threads block.
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Figure 1. Parallel Genetic Algorithm with Islands Model.

4.1. Parallel Genetic Algorithm with Islands Model

On the PGAIM the population is divided into subsets
[3]. The exchange of individuals is called migration, and
is considered as a new genetic operator. In Fig. 1 is
shown the organization of individuals in the population
of PGAIM. The pseudocode for PGAEI is presented in
Algorithm 1. The algorithm starts by allocating memory
on the CPU and the GPU, with the next step the CPU
calculates the cost matrix, after cost matrix is copied
from CPU memory to GPU memory.

Then the initial population is generated by the kernel
IniPop where each thread generates the individual will
process. At the end of this kernel fitness function for
each individual is evaluated, which is the sum of the
distances. The individuals generated by IniPop kernel
are stored in a variable called I that represents the old
solution. The population then enters a loop that pro-
cesses the PGAIM kernel, overall stopping criterion is
determined by the number of iterations or when an in-
dividual achieves a certain value of the fitness function.
In this work we chose to end when a certain number of
iterations is reached. The PGAIM kernel first thing is to
select the best population individual of each island in
order to keep, select the worst of the next island and the
best of the island replaces the worst of the next island,
for it was necessary to assign two variables in shared
memory one to store the fitness value of the best individ-
ual and another variable to store the thread identifier of
the best individual, so that only individuals of an island
may access these variables and keep isolated islands.

After that, an individual to cross is selected with tour-
nament selection operator, which compares five individ-

Algorithm 1 Pseudocode of PGAIM
main(){

memory allocation on the CPU and the GPU
calculate cost matrix
copy of memory from CPU to GPU
threads = IND NUM
blocks = ISLA NUM
IniPop<<<blocks,threads>>>()
while condition end==FALSE do

PGAIM<<<blocks, threads>>>(parameters)
end while
copy of memory Population from GPU to CPU
get best solution
free memory on GPU and CPU
}

global IniPop(){
PobGen(I)
Evalutate(I)
set the best indiviaul in each island
NextIslandMigrate(II+1)
}

global PGAIM(){
SetParents(I)
Inew ← ParentsCross(I)
Evaluate(Inew)
if Fitness(Inew) < Fitness(I) then

I = Inew

end if
Inew ←Mutation(I)

set the best indiviaul in each island
NextIslandMigrate(II+1)
}

uals and selects the one with higher fitness value. As
can be seen, all the threads come to make the crossing
in each iteration. The crossover operator is then applied
between the two parents. Subsequently, the mutation
operator is applied. The individual generated by cross-
ing is stored in the variable Inew representing the new
population. If the thread between mutation also make
the individual generated goes directly into the popula-
tion without replacing old best individual. Finally, in the
PGAIM kernel, generated individuals are evaluated and
their fitness function if the individual of the new popu-
lation has a better fitness than the individual of the old
population is replaced. When the iterations terminate
the old population is copied to the CPU. Then the best
solution generated by the GA is obtained and finally the
reports of CPU and GPU are released.
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Figure 2. Parallel Genetic Algorithm with Elite Island.

4.2. Parallel Genetic Algorithm with Elite Island

In the PGAEI, instead of migrating individuals between
islands, an island with the best individuals of each sub-
population, called Elite Island is built. This island of best
individuals is shared with all the other islands. In Fig. 2
is shown the organization of individuals in the population
of PGAEI.

The pseudocode for PGAEI is presented in Algorithm
2. The implementation of PGAEI in the GPU is very
similar to the way in which the PGAIM was implemented.
Begin with the kernel IniPop where the population is cre-
ated, with the difference that after evaluating the fitness
function of the best individual is selected each island
and migrated to the Elite Island. Individuals generated in
the kernel IniPop are stored in the I variable represent-
ing the older population. In addition there is a variable
called Elite E, where there is a space allocated to store
the best individual of each island. Then enters a loop
that processes the kernel PGAEI, which ends when a
certain number of iterations is reached. At the time of
the crossing only a random individual of the same is-
land I or Elite Island E is selected. Then generated
individuals are evaluated with the fitness function. If the
new individual in the population Inew have better fitness
than the individual of the old population I, it is replaced.
The mutation operator is applied similarly as in PGAIM,
with the difference that all individuals make mutation and
only enter the population if they are better than replacing
the individual is then applied. At the end of the PGAEI
kernel, the best individual of each island is selected and
migrates to Elite Island. When the iterations end only
the Elite Island CPU is copied. Then the best solution
generated by the GA is obtained and finally the reports

Algorithm 2 Pseudocode of PGAEI
main(){

memory allocation on the CPU and the GPU
calculate cost matrix
copy of memory from CPU to GPU
threads = IND NUM
blocks = ISLA NUM
IniPop<<<blocks,threads>>>()
while condition end==FALSE do

PGAEI<<<blocks, threads>>>(parameters)
end while
copy of memory Elite Island from GPU to CPU
get best solution
free memory on GPU and CPU
}

global IniPop(){
PobGen(I)
Evalutate(I)
set the best indiviaul in each island
EliteMigrate(E)
}

global PGAEI(){
SetParents(I, E)
Inew ← ParentsCross(I, E)
Evaluate(Inew)
if Fitness(Inew) < Fitness(I) then

I = Inew

end if
Inew ←Mutation(I)

set the best indiviaul in each island
EliteMigrate(E)
}

of CPU and GPU are released.

5. Results

SSeveral experiments are presented in order to com-
pare two strategies of parallel genetic algorithms on
GPU. The problems were obtained from the Travelling
Salesman Problem Library (TSPLIB) [10]. In all experi-
ments a mutation rate of 5% for PGAIM and 100% for
PGAEI was used, and each individual to mutate was
selected by tournament of five individuals chosen at ran-
dom. The algorithms were implemented in CUDA C on
a 3.4 Ghz Intel-i7 desktop computer with 16 GB of RAM
memory, running on a GNU/Linux 64-bits operating sys-
tem. The algorithms are processed on a GPU GeForce
GTX 780. Results for different TSP problems of TSPLIB
library with PGAIM are presented in Table 1 and results
with PGAEI are presented in Table 2. The Time column
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Table 1. TSP solution for different problems of TSPLIB with PGAIM.
Problem TSPLIB Best Worst Mean Error Stan. dev. (σ) Time (sec)
XQG237 1019 1038 1065 1049 1.86 11.24 9.01
BCL380 1621 1639 1676 1663 1.09 9.78 32.87
PBM436 1443 1485 1517 1503 2.91 9.62 66.02
XQL662 2513 2643 2694 2661 5.17 13.91 293.07
RBU737 3314 3442 3496 3467 3.86 24.03 355.69
DKG813 3199 3396 3481 3435 6.15 13.15 535.38
XIT1083 3558 3808 3902 3852 7.02 25.06 625.27
DKA1376 4666 5013 5115 5065 7.43 25.63 901.54
RBY1599 5533 6153 6276 6198 11.20 32.07 1052.36

Table 2. TSP solution for different problems of TSPLIB with PGAEI.
Problem TSPLIB Best Worst Mean Error Stan. dev. (σ) Time (sec)
XQG237 1019 1030 1052 1043 1.08 7.83 9.83
BCL380 1621 1633 1669 1654 0.74 12.67 35.36
PBM436 1443 1474 1509 1497 2.14 12.41 70.19
XQL662 2513 2606 2666 2646 3.70 18.68 309.02
RBU737 3314 3416 3453 3437 3.07 20.47 367.54
DKG813 3199 3316 3351 3332 3.65 9.83 550.31
XIT1083 3558 3744 3810 3781 5.22 20.93 644.71
DKA1376 4666 4934 4996 4960 5.74 21.95 976.16
RBY1599 5533 5943 6141 6025 7.41 25.63 1161.18

Figure 3. Representation of cities for the problem xqg237 of TSPLIB. Figure 4. Best solution obtained with the PGAEI algorithm for the
problem xqg237.
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shows the time it takes to run the entire program, and
the Error column shows the error of approximation of
the value of the fitness function of the best individual
that provides the genetic algorithm (best individual is the
solution having the minimum distance over the cities)
and the TSPLIB optimum. The error of the best path
found with regard to the optimal route in the TSPLIB
reported is calculated as follows:

Error =

(
BestS olution − OptimumTS PLIB

OptimumTS PLIB

)
x100, (2)

where BestSolution (Best column) is the result throw by
implemented algorithm and OptimumTSPLIB (TSPLIB
column) is the TSPLIB optimum. Figure 3 presents the
problem xqg237, the cities are represented by the holes
of a printed circuit board. Also, the Figure 4 shows a
solution to implement PGAEI to solve problem xqg237.

In Table 1, we can see that the more cities have the
TSP problem the algorithm solution could be further
from the desired optimum, this due to the how the com-
plexity of the TSP in relation to the number of cities
increases. For the mean results in both cases 10 runs
of the algorithm were made.

The Table 2 shows that the behavior is very similar
to the PGAIM but PGAEI algorithm yields better results
than PGAIM in very similar time. In both cases we can
see that the error increases as the number of cities
increases, and the PGAEI got less than 8% error for all
the problems.

6. Conclusions and Future Work

In this paper parallel genetic algorithms were imple-
mented on a GPU to approximate the solution of TSP
problem. Two versions of parallel genetic algorithms
were implemented, a Parallel Genetic Algorithm with
Island Model and a Parallel Genetic Algorithm with Elite
Island. The Parallel Genetic Algorithm with Elite Island
gives better results than the Parallel Genetic Algorithm
with Island Mode. This advantage is provided by the
Elite Island because it shared the fittest individuals
among all the islands in almost the same time.

Currently, we are developing a version of parallel ge-
netic algorithm on multi-GPU to solved TSP bigger prob-
lems, the main idea is to have a Parallel Genetic Al-
gorithm with Elite Island by GPU and make migration
between Elite Islands.
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