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Abstract:
This article describes the problem of real-time estimate of
the position of a vehicle for use in terrestrial navigation
systems. After describing the context of the application and
give a definition of the problem, we review the mathematical
framework and the technologies involved in designing posi-
tioning systems. We compare the performance of more pop-
ular data fusion approaches and give a view of their limita-
tions and capabilities. Then check for the robustness of the
positioning systems when one or more sensors are defective.
It describes how the positioning system can be made more
robust and adaptable, taking into account the occurrence
of failure of sensors. Finally, it goes a step further and ex-
plores the possible architectures for collaborative position-
ing systems, where multiple vehicles interact by exchanging
data to improve the estimate of its own location. The article

finishes with some conclusions about future developments in
this field.

Keywords: Data fusion; positiom estimation; navigation
systems

A
N integrated navigation information system
is an embedded system installed in a vehi-
cle, which provides useful functionalities to
the driver like path planning, guidance, dig-

ital map and points of interest directory [1]. The guidance
module uses a planned trip to indicate the driver which route
to take. To avoid giving wrong indications and impair driv-
ing safety, the navigation system relies upon a positioning
module to know precisely and continuously the localization
of the vehicle.

The required performance of the positioning module is
achieved by using a cluster of heterogeneous sensors whose
measurements are fused. The sensors commonly found in
those systems are differential odometer, global positioning
system (GPS) and 2 or 3 axis inertial measurement unit
respectively. Two or more of these complementary po-
sitioning sensing methods must be integrated together to
achieve the required performance at low cost. The inte-
gration, which implies the fusion of noisy data provided by
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each sensor, must be performed in some optimal manner.
Most positioning system designers choose the Kalman filter
as the data fusion method. In particular, one uses the the ex-
tended Kalman filter. The extended Kalman filter is a vari-
ation of the Kalman filter used to cope with nonlinearities
of the sensors. Recently, an improvement to the extended
Kalman filter has been proposed, the unscented Kalman fil-
ter [2]. An other interesting alternative to using Kalman
filters is the use of artificial neural network (NN) [3]. In the
following section, we will look at those various data fusion
approaches and discuss their respective performances.

Next we will look at the robustess required for a real time
positioning system. In positioning navigation systems, at
any time, any of the sensors can break down or stop sending
information, temporarily or permanently. To ensure a prac-
tical solution for use in guidance and navigation systems,
faulty sensors must be detected and isolated such that their
erroneous data will not corrupt the global position estimates.
As we just mentioned, Kalman filter is usually popular for
data fusion applications. However, an interesting idea is to
use it for fault detection architecture as well. In this section,
we will evaluate the potential of combining fault detection
and data fusion into a single architecture to make a robust
positioning navigation system [4].

So far, single vehicle positioning systems have been dis-
cussed. In a subsequent section, we will consider the pos-
sibility to achieve a distributed collaborative architecture.
Proliferation of real time inter-vehicular communications
provides new sources of exploitable positioning data. Ve-
hicles can, under numerous situations, have GPS satellite
shortages but there will always be vehicles in their vicin-
ity, viewing different GPS satellites line of sights (LOS), to
provide them with useful navigation information. We will
thus look at a cooperative positioning technique making use
of reliable positions of some vehicles to enhance position-
ing estimates of some others [5]. The approach exploits
inter-vehicle data flow to extract good position measure-
ments from vehicles with good GPS satellite LOS, in order
to enhance low positioning accuracy of other vehicles, in the
neighborhood. The integration of such information is done
using geometric data fusion approach.

CONTEXT AND PROBLEM
STATEMENT

The principal function of a land navigation system in a ve-
hicle is to guide the driver while minimizing the trip du-
ration and/or the traveled distance. Modern navigation ap-
plications require position estimates with a precision of 1
meters or less and at a frequency of 1 Hertz or more. A dif-
ferential GPS receiver alone could in principle estimate the
position with the required performance. It is still too expen-
sive however for automotive applications and the fixed ref-
erences are not always available. On the other hand, a low
cost GPS receiver cannot always achieve the required pre-
cision. Furthermore, GPS alone based systems suffer from
frequent occlusions of satellite signals by high buildings or
heavy foliages, which often prevent computation of a solu-
tion by a GPS receiver for several seconds. For all these
reasons, a cluster of various sensors, including a GPS re-
ceiver, is usually used [6]. Two other popular sensors are
the differential odometer and the inertial measurement unit
(IMU) [7]. A differential odometer measures the distance
traveled by a vehicle and the current azimuth during a sam-
pling period. An inertial measurement unit (IMU) measures
the vehicle’s inertia characterized by it’s acceleration and
it’s angular velocity. An IMU measures the acceleration and
the angular velocity along the axis of a Cartesian coordinate
system. With these two sensors, the position of the vehi-
cle is reckoned by applying basic kinematics equations and
using an initial position obtained from another information
source. By means of integration, the traveled distance and
the azimuth variation can be computed and therefore a new
position can be computed with these measurements and the
last known position by dead reckoning. The estimated po-
sition will eventually drift from the real position because of
the accumulation of errors. Indeed, the recursive nature of
the positioning computation with the IMU causes the posi-
tioning error to grow proportionally with time. A periodic
reset is needed. A trivial way to fuse the data from these
two sensors is therefore to reset periodically the IMU po-
sition estimate with an absolute position estimate from the
GPS.
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Modern navigation applications
require position estimates with a
precision of 1 meters or less and
at a frequency of 1 Hertz or more.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

A more complex fusion method than the reckon/reset posi-
tioning system described above is required to improve the
precision of the estimation. These methods fuse continu-
ously the available measurements in some optimal sense, as
depicted in Figure 1 in a centralized architecture.

Figura 1. Centralized fusion.

The sensor’s measurements are distorted by deterministic
and random errors. Those sources of random errors are
usually described using stochastic models in a statistical
framework. The estimate ideally maximizes the a poste-
riori probability of the random variable position, resulting
from the mathematical transformation of the stochastic pro-
cesses, which model the sensors imperfect measurements.
The fusion method then defines the mathematical transfor-
mation. As we will see later on, the most popular method is
the Kalman filter [8]. The Kalman filter is an optimal linear
estimator, which uses the a priori information on the sensor
noises, the vehicle dynamic and the kinematics equations to
compute recursively an optimal position, which minimizes
the mean square error [9], [10].

SENSORS MODELS

In a positioning navigation system, various sensors are used.
Generally speaking, a sensor is a device that responds to or
detects a physical quantity and transmits the resulting signal
to a controller. Position sensors can be designed to detect

Tabla 1. Relationship of vehicle position and sensor
outputs.

various parameters (coordinate, distance, direction, or an-
gular velocity) of the position of vehicular mechanical sys-
tems. Sensors can provide absolute or relative navigation in-
formation. GPS and magnetic compass provide absolute po-
sition and angular direction (azimuth) respectively, whereas
all other sensors provide relative navigation information us-
ing dead reckoning. Detailed relationships between the po-
sition and typical sensors are shown in Table 1.

GPS MODEL

The GPS model can be described by equation (1) [1].

δ̂[t] = δ[t]+δtrop[t]+δiono[t]+δmult [t], (1)

where δ̂[t] is the pseudorange measured by the emulated
receiver, δ[t] is the real pseudorange, δtrop[t] is the tropo-
spheric delay, δiono[t] is the ionospheric delay, δwhite[t] is the
white noise generated by the receiver’s electronic compo-
nents and δmult [t] is the multipath problem.

IMU MODEL

The 3-axis inertial measurement unit has a single model for
every gyroscope and accelerometer described by equation
(2), [6].
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ˆdi[t] = di[t]+ si(di[t]+d j[t]sin(δi j)

+dk[t]sin(δik))+bi[0]+∑
t
n=1 wbi[n]

+d j[t]sin(δi j)+dk[t]sin(δik)

+ci(di[t]+d j[t]sin(δi j)

+dk[t]sin(δik)
2)+wi[t],

(2)

where ˆdi[t] is the measurement, di[t] is the real value, si is
the scale factor error,d j[t] is the real value relative to the
axis j, dk[t] is the real value relative to the axis k, δi j is the
misalignment angle between the axis i and j, δik is the mis-
alignment angle between the axis i and k, bi[0] is the turn-on
bias, wbi[n] is the random walk white noise characterizing
the bias drift, ci is the non-linear scale factor and wi[t] is the
additive white noise component. The scale factor error, the
bias parameters, the non-linear scale factor and the additive
white noise component have different value depending on
the sensor type.

DIFFERENTIAL ODOMETER MODEL

A differential odometer is constituted of two sensors mea-
suring the number of rotation of each wheel situated on the
same axle. The total traveled distance and the azimuth of
the vehicle can be computed with the equation (3) and (4)
respectively.

d̂[t] = d̂[t−1]
+ (1+vd v[t]+sd)cd [t]+r[t]

2

+
(1+vg v[t]+sg)cg[t]+r[t]

2

(3)

θ̂[t] = θ̂[t−1]
+

(1+vg v[t]+sg)cg[t]+r[t]
l

− (1+vd v[t]+sd)cd [t]+r[t]
l ,

(4)

where d̂[t] is the total traveled distance at time t, d̂[t − 1]
is the total traveled distance at time t − 1, v[t] is the car’s
velocity, vd and vg are the gains characterizing the tire di-
latation, sd and sg are the scale factors for the right and the
left wheel respectively, cd [t] and cg[t] are the numbers of
rotations measured within the interval [t−1, t] for the right
and left wheel respectively, r[t] is a uniform random variable
describing the resolution error, θ̂[t] is the azimuth estimated
at time t, θ̂[t−1] is the azimuth estimated at time [t−1] and
l is the axle length.

DATA FUSION USING KALMAN
FILTER

The architecture of a positioning system can be decentral-
ized or centralized. In the centralized architecture, all the
sensor measurements are fused by one fusion method only.
So it is easy to compare the performance of two different
fusion methods when the cluster of sensors is the same. The
Kalman filter is an optimal linear estimator introduced in
1960 [8]. The filter is optimal when the process noise and
the measurement noise can be modelized by white Gaussian
noise. However, it behaves poorly in the presence of non-
linearities. Improvement can be achieved with the extended
Kalman filter (EKF) [10], [11]. This filter is based upon the
principle of linearizing the state transition matrix and the
observation matrix with Taylor series expansions. The ex-
tended Kalman filter has been very popular for land naviga-
tion system [7, 25, 26]. The equations of a centralized data
fusion architecture based on an extended Kalman filter for
land navigation positioning system are described in [7]. As
expected, the linearization can lead to poor performance and
divergence of the filter for highly non-linear problems. In
addition, the performance analysis of the extended Kalman
filter presents some difficulties due to the recurrence of the
measure sequence into the states of the filter [6]. Finally,
implementation of the extended filter can be quite laborious
depending on the number of states required to model the
system. For all these reasons, a recent improvement to the
EKF, named the “unscented” Kalman filter (UKF) has been
proposed [14]. The UKF approximates the probability den-
sity resulting from the non-linear transformation of a ran-
dom variable instead of approximating the nonlinear func-
tions with a Taylor series expansion. The approximation is
done by evaluating the nonlinear function with a minimal
set of carefully chosen sample points. The posterior mean
and covariance estimated from the sample points are accu-
rate to the second order for any nonlinearity [12]. If the
priori random variable is Gaussian, the posterior mean and
covariance are accurate to the third order for any nonlinear-
ity [13]. The first use of an unscented Kalman filter for land
navigation positioning system is described in [15]. To our
knowledge, apart from our work, only one paper has been
recently written on the use of the unscented Kalman filter as
the fusion method in an integrated navigation information
system [16]. An unscented Kalman filter has also been used
for GPS positioning [17]. In the following sections, we will
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look into more details of the use of unscented Kalman filter
over the extended Kalman filter for an integrated navigation
information system.

EXTENDED KALMAN FILTER

The extended Kalman filter predicts the states of the random
process with equation (5). The predicted states are updated
with the measurements in equation (6) [2].

xk+1|k = Φk+1|k[xk|k]+wk (5)

zk+1 = Hk+1|k[xk+1|k]+ vk+1 (6)

where xk+1|k is the predicted process state vector, xk|k is the
estimated process state vector, Φk+1|k is the discrete state
transition matrix from k to k + 1, wk is the process noise
vector, zk+1 is the measurement vector, Hk+1|k is the obser-
vation matrix and vk+1 is the measurement noise vector.

In our study, we have 13 states to describe the random pro-
cess. A position-velocity-acceleration model is used for
each component of the position [11]. The last four states
include the slope, the pitch, the azimuth and the yaw ve-
locities. The state transition matrix Φk+1|k is linear. Only
the observation matrix Hk+1|k contains nonlinear equations,
the most relevant for horizontal positioning is described by
equation (7).aR

aP

aY

=

cos(ΦY )cos(ΦP) −sin(ΦY ) cos(ΦY )sin(ΦP)

sin(ΦY )cos(ΦP) cos(ΦY ) sin(ΦY )sin(ΦP)

−sin(ΦP) 0 cos(ΦP)


aN

aE

aD


(7)

where aR, aP, aY are the acceleration vector components
along the roll, the pitch and the yaw axis respectively, ΦP

and ΦY are the euler angles for the pitch and the yaw axis
respectively; aN , aE , aD are the acceleration along the north
axis, the east axis and the down axis respectively.

The extended Kalman filter approximates the non-linear
matrix H based on the Taylor series expanded about the es-
timated state vector with

H[x̂k+a|k]≈ H[x̂k|k]+
∂H[x̂k|k]

∂x̂k|k
(x̂k+1|k− x̂k|k). (8)

The linear approximation often introduces large errors in the
estimated state vector and can lead to the divergence of the
filter.

THE UNSCENTED KALMAN FILTER

The unscented Kalman filter is based on the unscented trans-
formation, which is a method for reckoning the statistics of a
random variable undergoing a non-linear transformation. A
set of 2nχ+ 1 weighted samples are deterministically chosen
to capture the true mean and variance of the prior random
variable.

nχ = nx +nw +nv (9)

where nx is the number of process states, nw is the dimension
of wk and nv is the dimension of vk. The unscented Kalman
filter approximates the non-linear observation matrix by

H[x̂k+1|k]≈
2nχ

∑
i=0

WiH[x̂x
i,k+1|k]+χ

v
i,k+1 (10)

where Wi are the weights, x̂x
i,k+1|k are the sigma points de-

scribing the prior predicted states and χv
i,k+1 are the sigma

points describing the measurement noise.

In order to obtain statistically reliable data on the perfor-
mance of both algorithms, one hundred Monte Carlo sim-
ulations have been run for each sensor fusion method [20]:
For each sampling time, the estimated positions from the
Monte Carlo simulations form the sampling distribution.
There were 26639 measurement vectors for each Monte
Carlo simulation. These sampling distributions approxi-
mate the truth continuous distributions of the posteriori ran-
dom variables describing the estimated positions. The first
moment of each sampling distribution has been computed
and used for the computation of the performance metrics.
The two performance metrics usually encountered in data
fusion systems analysis are the accuracy/precision of the
fusion and the computational time to perform the fusion.
The accuracy is evaluated by taking the Euclidian distance
between the estimated position and the true position. The
mean and the variance of the Euclidian distances for the
whole simulation are reckoned. The variance describes the
precision of the fusion method. The horizontal position is
described by the tangential plane located at the real vehicle
position whose coordinates are given by the latitude and the
longitude.
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In [2] we give detailed results showing that the unscented
Kalman filter has slightly better results for horizontal posi-
tioning than the extended Kalman filter. The estimated po-
sition is less biased for the unscented Kalman filter than for
the extended Kalman filter. It shows also that the unscented
Kalman filter is more precise than the extended Kalman fil-
ter. However, contrary to the claim in [12,13], we found
that the computational cost of the unscented Kalman filter
is significantly greater, by a factor larger than 20, than the
computational cost of the extended Kalman filter. The sig-
nificant execution time difference is related to the number of
times equations (5) and (6) are evaluated for each fusion al-
gorithm. With the unscented Kalman filter, these equations
are evaluated 75 times, once for each sigma point. With the
extended Kalman filter, the Taylor series expansion of these
equations are only evaluated once at each iteration. Further-
more, the Jacobian of the matrix H used in the Taylor se-
ries expansion is calculated only once because the observa-
tion equations are static. Thus the multiple computations of
equations (5) and (6) by the unscented Kalman filter at each
iteration is responsible for the larger computational cost.

Surprisingly, we found that the unscented Kalman filter is
less performant than the extended Kalman filter when there
is no GPS solution available. In that situation, the acceler-
ation of the vehicle measured by the IMU is used to esti-
mate the vehicles position described by equation (7). This
equation represents the nonlinear transformation of the es-
timated states which are assumed to be Gaussian random
variable in order to predict the IMU measurement. The per-
formance of both filters depends on their capacity to esti-
mate the mean of the resulting random variable. An em-
pirical analysis has been made to evaluate this capacity. In
this experiment, each state has been modelized by a discrete
Gaussian random variable with 100 realizations distributed
uniformely in the range of possible values with a 99% prob-
ability of realization. Each realization is present a number
of times proportional to its probability of realization in the
statistical data representing the probability function. Thus,
24060 samples modeled each random variable. The non-
linear function described by equation (7) is then applied to
these random variables and the means of the resulting ran-
dom variables are computed. The same discrete random
variables have been used with the Taylor series expansion
of equation (7).

In the extended Kalman filter, the linearization occurs
around the states estimated at the previous iteration. The lin-

Estimated state EKF UKF
Roll acceleration 0.0064 % 0.8070 %
Pitch acceleration 0.0218 % 1.2876 %
Yaw acceleration 0.2482% 0.0754 %

Tabla 2. Difference between the real mean and the
estimated mean of the a posterior density.

earized equation is applied to the predicted states at the cur-
rent time. The linearization error is directly proportional to
the difference between the estimated states and the predicted
states. For the empirical analysis, the mean variation be-
tween the estimated value and the predicted value obtained
with the extended Kalman filter for one Monte Carlo simu-
lation has been taken. Table 2 shows the variation between
the real mean of the a posteriori probability density and the
estimated mean of the a posteriori probability density ob-
tained with the Taylor series expansion and the unscented
Kalman filter respectively. As can be seen, the unscented
Kalman filter provides no significant improvement over the
extended Kalman filter and even brings a degradation in per-
formance for two acceleration components (roll and pitch).

The superiority of the unscented Kalman filter happens only
when the variation between the predicted states and the esti-
mated states is important. However, due to the low dynam-
ics of the vehicle, most of this variation is not important
enough to generate a significant linearization error for the
EKF.

THE USE OF NEURAL NETWORKS IN
POSITIONING SYSTEMS

A centralized fusion implied the use of only one algorithm
which fuses all the measurements provided by the sensors.
The engineering labour required to construct a centralized
Kalman fillter can be very high. For this reason, most of the
GPS/INS systems have decentralized filters, which gain in
simplicity. However, the price to pay is a loss of precision
compared with a centralized architecture [21]. An attractive
alternative is to use a neural network (NN) for the data fu-
sion. Indeed, a centralized NN is no more difficult to realize
than a decentralized one. NNs have already been applied
to data fusion related to positioning problem in robotic with
success [18], [22]. The major advantage of an NN compared
to a Kalman filter resides in the fact that it doesn’t need any
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a priori statistical and mathematical model to find a func-
tion which maps optimally the inputs with the outputs, in
our case the absolute position. The most difficult task is to
gather some sensor data which can cover adequately the dif-
ferent manoeuvres to be encountered by a road vehicle and
its dynamic. The manoeuvres are a function of the road ge-
ometry and the vehicle’s performance. For example, a NN
trained with measured data coming only from a straight road
segment may not be able to give a good position when the
vehicle meets a curve.

A NEURAL NETWORK FOR DATA
FUSION

As described in more details in [3, 19], we used a feed-
forward backpropagation neural network that was trained
with 14939 training data set for 2000 epochs. The NN
has 4 layers composed of 20, 20, 20 and 3 neurons re-
spectively. The corresponding transfer functions are lin-
ear, log-sigmoid, tan-sigmoid and linear. This architecture
was the most promising of the 12 architectures investigated
with various number of layers, transfer functions and num-
ber of neurons trained initially for 100 epochs. Batch train-
ing was prefered over iterative training for its computation
efficiency. The mean square error gave the training perfor-
mance at each epoch. The second order training method was
the scaled conjugate gradient. This method requires only
O(N) operations per epoch compared to others methods like
Gauss-Newton O(N3) and Levenberg-Marquardt O(N3) [24,
19]. When considering the network size, the other training
methods were impractical. Table 3 contains the NN’s inputs.

The GPS receiver sampling frequency is usually lower than
those of the inertial measurement unit or the differential
odometer. For synchronization purpose, a boolean entry
specifies to the NN if a GPS solution is available. A cen-
tralized Kalman filter has been realized to has a reference
for the evaluation of the NN’s performances. The central-
ized Kalman filter has 13 states and 10 measurements. The
simulation generates 26430 data samples.

Data Sensor
Latitude GPS
Longitude GPS
Altitude GPS
Percent Dilution Of Precision (PDOP) GPS
Linear acceleration INS
Horizontal centripetal acceleration INS
Vertical centripetal acceleration INS
Yaw angular velocity INS
Pitch angular velocity INS
Total traveled distance Diff. odometer
Azimuth Diff. odometer
GPS solution availability GPS
Sampling time IMU

Tabla 3. Neural network inputs.

Position Kalman (m) ANN (m) Gain (%)
Latitude 2.73 9.34 -242.90

Longitude 12.44 3.56 71.38
Altitude 49.21 0.38 100.78

Tabla 4. Mean of the positioning errors by the Kalman
Filter and the NN.

DATA FUSION RESULTS USING
NEURAL NETS

The mean and variance of the positioning error during the
simulation was computed. Table 4 indicates that the posi-
tions estimated by the NN are less biased for the longitude
and altitude but more biased for the latitude than the same
positions estimated by the Kalman filter. The NNs estima-
tion biases don’t exceed 10 meters. So even if the NN is a
biased estimator, it still meets the required performance.

As shown in Table 5, the variances of the latitude errors
and the altitude errors for the NN are less than those of the
Kalman filter. The variance of the longitude errors is 5 per-
cent more for the NN than for the Kalman filter. The per-
formance of the NN is generally better than the peformance
of the Kalman filter in a mean square error sense. The im-
portant gain for the altitude is caused by the NN’s ability to
estimate the bias of the GPS altitude.

It can be seen here that NNs can be used as a centralized
fusion method. The results show that neural networks are
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Position Kalman ANN Gain (%)
Latitude 1073.2 606.1 43.52

Longitude 994.8 1029.7 -3.51
Altitude 12952.0 2.4 99.98

Tabla 5. Variance of the positioning errors by the
Kalman filter and the NN.

an attractive alternative to the Kalman filter as a centralized
fusion method. In [3], we show also how NNs can also be
used as nonlinear pre-processing filters for the land naviga-
tion positioning problem. In that paper, we show the NN’s
capability to successfully learn nonlinear functions when
applied to GPS and differential odometer measurement pre-
filtering. The major difficulty with an NN is to have access
to ground truth data for the supervised training. Usually, the
only solution is to have access to some data coming from a
reference usually given by high precision, high cost sensors.
Some further researches on this topic include the evaluation
of various NNs with real sensors and the replacement of the
feed-forward backpropagation NN with a recurrent NN.

ROBUST AND ADAPTIVE POSITION
ESTIMATE IN PRESENCE OF
SENSORS FAULTS

So far, we considered the case of continuously operating
noisy sensors. But what happen to the data fusion process
and the position estimate if one of the sensors fails? Ei-
ther from a users safety point of view or a designers per-
spective, all automotive navigation systems should be fully
reliable and prevent faults or failures. In all but the most
trivial cases the existence of a fault may lead to situations
with safety, health, environmental, financial or legal impli-
cations. Although good design practice tries to minimize
the occurrence of faults and failures, it is recognized that
such events do occur. In such cases, faulty sensors must
be detected and the system must be able to reconfigure it-
self so as to overcome the deficiency caused by the fault.
In brief, a navigation system must be robust and adaptive.
Faults can cause the loss of the overall performance of a
system, which may present hazards to personnel or lead to
unacceptable economic loss. In order to minimize the im-
pact, fault detection schemes must be developed. Actually,
several fruitful research efforts in the field of fault detection

and filter based adaptive architectures, combining fault de-
tection and data fusion, have been proposed to improve the
reliability and adaptability of various control systems [32,
33, 34]. However, little has been published in the area of
automotive navigation systems.

FAULT DETECTION ARCHITECTURE

A fault is usually defined as an undesired change in system
estimated parameters that degrade partial or overall perfor-
mance. Fault detection is a binary decision making pro-
cess. Either the system is functioning properly, or there is
a fault present. Generally speaking, fault detection consists
of two processes: residual generation and decision making,
as shown in Figure 2 [28, 29].

RESIDUAL GENERATION

Residuals are defined as the resulting differences between
analytically redundant quantities in the system model.
These are similar to innovations generated by a Kalman fil-
ter, which are the differences between the measured and
estimated outputs. Under normal conditions, residuals are
small or zero mean; while the occurrence of a fault causes
the residuals to go to non-zero or unusually large values.

DECISION MAKING

The decision making process, which acts as an arbitrator,
involves assessing the residuals and identifying when and
where any abnormalities occur. This is done through thresh-
old testing both static and dynamic residual behaviors, and
various statistical tests, where the thresholds are typically
based on signal/residual variance.

Figura 2. Fault Detection Architecture.
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Source of errors Standard deviation (m)
Common

Ionosphere 7.0
Clock and ephemeris 3.6
Troposphere 0.7

Non-common
Receiver noise 0.1∼ 0.7
Multipath 0.1∼5.0

Tabla 6. GPS Error Sources and their Approximate
Deviation [27].

SENSOR FAULTY MODELS

So far, although the precision and reliability of sensors are
improved significantly with the development of the technol-
ogy, various sensor faults driven by different situations do
exist. In the following, several faulty scenarios of sensors
are investigated and discussed.

GLOBAL POSITIONING SYSTEM
(GPS) FAULTY MODEL

A low-cost GPS receiver can output the vehicle position and
driving speed. However, the measurement is likely to be
corrupted by time-correlated noise and the GPS signal is
susceptible to jamming. However, the position and velocity
measurements do not drift over long periods of time. A GPS
faulty model can be based on four particular parts: typical
error budget, environmental interferences, signal loss, and
hardware malfunction.
Typical Error Budget

The main error sources in GPS are listed in Table 6. These
errors can be divided into two categories [1]: common and
non-common. Common errors are approximately the same
for receivers operating within a limited geographic region.
Non-common errors are unique to each receiver and depend
on the receiver type and multipath mitigation technique be-
ing used (if any). The point of this classification is that
DGPS can effectively remove the common errors.
Environmental Interferences

GPS satellite signals, as with any other radio signals, are
subject to some form of interference and jamming. It is

known that GPS satellite currently transmit position infor-
mation in the 1,500-MHz frequency band with a typical
accuracy under 100 meters to anyone in the world who has
a simple receiver costing as little as $100. Any electronic
systems generating radio signals in this frequency band,
main lobe or side lobe, will tend to be a source of inference
to the GPS receiver. With the popularization of personal
radio and Wi-Fi devices, electromagnetic interferences,
intentional or unintentional, are more and more serious.
As an example, the proliferation of ultra-wideband (UWB)
devices intended to be mass-marketed to the public could
cause harmful interference to GPS.

Signal loss

GPS is a line-of-sight sensor, and therefore GPS measure-
ments are subject to signal outages. If it cannot “see” four
satellites, then it will not produce the expected output. This
case is called signal loss. It may include the following sce-
narios:

• Urban environments with all buildings (the so-called
urban canyons).

• Inside parking structures.

• In a long tunnel without any relay station.

• Under heavy foliage.

• Under bridges.

Hardware Malfunction

A GPS receiver hardware malfunction can be caused by any
abnormality of its components, such as antenna, amplifier,
reference oscillator, frequency synthesizer, wire disconnec-
tion, and power lost, resulting to no output, or provide an
unstable or incorrect signal. Compared to the other sources
of GPS faults, the probability of a hardware malfunction of
the GPS receiver is rather low and can be considered neg-
ligible. Taking all the above into account, the GPS faulty
model can be described as in Figure 3.

INERTIAL MEASUREMENT UNIT (IMU)
FAULTY MODEL

A low-cost IMU can output the vehicle accelerations and
angular rate which can then be integrated by an Inertial
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Figura 3. GPS Faulty Model.

Navigation System (INS) to obtain the vehicle position,
velocity, and attitude. The advantage of an INS is low
sensitivity to high-frequency noise and external conditions.
But the measurement error of INS will accumulate if it is
not calibrated on-line. The faulty model is presented in
Figure 4 and the scenarios driving the IMU to a faulty state
are discussed below:

IMU Error Sources and Faulty Scenarios

1. Bias due to bearing torques (for momentum wheel
types), drive excitation feedthrough, electronics off-
sets and environmental temperature fluctuations. In-
tuitively, bias is any nonzero sensor output when the
input is zero.

2. Scale factor error, often resulting from aging or manu-
facturing tolerances.

3. Alignment errors: Most stand-alone IMU implemen-
tations include an initial transient period for alignment
of the gimbals (for gimbaled systems) or attitude di-
rection cosines (for strapdown systems) with respect to
the navigation axes. Errors remaining at the end of this
period are the alignment errors. These include tilts and
azimuth reference errors. Tilt errors introduce acceler-
ation errors through the miscalculation of gravitational
acceleration, and these propagate primarily as Schuler
oscillations plus a non-zero-mean position error ap-
proximately equal to the tilt error in radians times the
radius from the earth center. Initial azimuth errors pri-
marily rotate the system trajectory about the starting
point, but there are secondary effects due to Coriolis
accelerations and excitation of Schuler oscillations.

4. Cross coupling error (non-linearity).

5. Quantization error, which is inherent in all digitized
systems.

6. Fault due to one or multiple of the moving parts wear
out or jam, or gimbals lock.

IMU FAULTY MODEL DIAGRAM

Figura 4. IMU Faulty Model.

ODOMETER FAULTY MODEL

An odometer is one of the most common devices used
for tracking and relative positioning of vehicles. In the
transmission-based odometer, the distance to be determined
is based on the number of counts for the wheel and
calibration constants which are proportional to the radius
of the tire. Thus any potential trends that change the radius
and the number of counts can drive the odometer to a faulty
output.

Tire radius change

The major sources of tire radius variation are listed in the
following reference [30]:

1. Tire radius tends to increase as vehicle velocity in-
creases because of increasing centrifugal force on the
tire.

2. Tire radius tends to increase as air pressure within the
tire increases due to increase tire temperature or other
factors.

3. Tire radius tends to increase as tread is worn off during
the lifetime of the tire.
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Road Situation

These kinds of error sources depend on the road situation,
including:

• Running over objects on the road, slips or skids involv-
ing one or more wheels when the vehicle accelerates
or decelerates too rapidly or travels on a snowy, icy, or
wet road.

• In sharp turns, the contact point between each wheel
and the road can change, so that the actual distance
between the left and right wheels will be different from
the one used to derive the heading.

Gears Tooth Lost

An odometer can operate by counting the pass of teeth or
tabs of the ferrous wheel mounted on the rotating shaft of
the vehicle. If one or more teeth are lost, then the value will
abate n/t, where n is the number of the lost teeth, t is the
total teeth of the wheel. In the real situation, the occurrences
of losing three or more teeth are so puny that they can be
omitted.

In brief, the wear out of the tire, the pressure of the tire, the
velocity of the vehicle, the slippage of the tire, and the gear
teeth lost will contribute to the odometer fault.

INCLINOMETER FAULTY MODEL

The error sources of the inclinometer may consist of:

1. Error caused by thermal expansion or temperature
changes. A normally distribution band-limited white
noise is used to demonstrate the thermal noise.

2. Drift, calibration error or quantization error due to ana-
log to digital converter resolution.

3. Electromagnetic interference (the major component of
the inclinometer faulty model). It can be a uniform
or a Gaussian distribution, or a combination of both.
The variance and amplitude depend on the traveling
environment.

4. Power lost or hardware malfunction: A permanent
fault, but since it is only in a very low possibility, it
is omitted in this simulation.

MAGNETIC COMPAS FAULTY MODEL
(fluxgate compass)

A magnetic compass is an inexpensive absolute direction
sensor. The main drawback with this device is that the
quantity measured, i.e. the intensity and direction of the
magnetic field, can be distorted in the presence of metals
and other electrical or magnetic fields, such as power lines,
transformers and cars powertrain system.

Compass operations include the following error sources:

1. Hilly road error [31]: When the vehicle is traveling
over a hilly road, the compass plan will not be parallel
to the plane of the Earth surface. The compass mea-
sures only the projection of the vector components.
This is a short-term magnetic anomaly.

2. Random noise error [31]: a) In the situation of trav-
eling nearby power lines, big trucks, steel structures
(such as freeway underpasses and tunnels), reinforced
concrete buildings, or bridges (short-term magnetic
anomalies); b) In an environment of electrical or mag-
netic noise, or magnetization of the vehicle body
(long-term magnetic anomalies).

3. Calibration error: Misalignment of the compass with
respect to the vehicle frame simply results in a con-
stant error. This type of error can also be attributed to
an inaccurate estimation of the current declination.

4. Permanent fault: power lost or interface cable discon-
nected (very low possibility, they are being omitted in
the simulation).

ADAPTIVE AND ROBUST DATA
FUSION ARCHITECTURE

In positioning navigation systems, high precision and re-
liability with low cost are always pursued. Actually, for
road navigation, the benefits of the information obtained
by the fusion process make it possible to use multiple less
powerful, lower cost sensors to achieve as good a perfor-
mance as those much more expensive ones. Kalman filter
and its derivatives, the most popular data fusion methods,
have been used extensively in autonomous or assisted navi-
gation system for several years. But almost all of these ap-
plications are based on the assumption that all sensed data
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are complete and reliable. If one or more sensors are faulty,
then the fusion filters will tend to choke. In order to ensure
a reliable positioning estimate in the case of faulty sensors,
an adaptive approach is proposed as in Figure 5.

Figura 5. Adaptive Sensor Fusion System.

As most of the navigation systems, the objective of the
above system is to make the position estimate of the vehicle
as accurate and reliable as possible. Sensors (GPS, IMU,
odometer, inclinometer and compass) data which are used
to compute the position and attitude of the vehicle, often
involve sources of uncertainties. Meanwhile, a state space
model can be constructed from the vehicle dynamic to per-
form the function of sensor fusion. Both their outputs (mea-
surements and estimates) can be combined together through
a particular function so as to generate a residual signal.
Passing this signal through a detection process, a decision
is made: either the system is running properly, or there is
a fault occurring, which leads to the fusion process rerun-
ning to optimize the position estimates. From the diagram
above, we can see how a residual signal generator and a
fault detector are embedded into the conventional data fu-
sion architecture. A Kalman filter approach is used, since it
is simpler and more effective to attain the residual signal via
state estimation. The key idea is to reconstruct the outputs
of the process with the aid of Kalman filter and to use the
estimation error, or some particular statistical functions of
them to assess the residual signal.
Then the faultiness can be detected by considering the resid-
ual properties against some threshold. If any information
from the sensors is detected to be faulty (residual proper-
ties go over a given threshold), then the corresponding mea-
surements are discarded. In that case, the position estimate
needs to be re-updated. In this approach, fault detection and
data fusion are combined into a single Kalman architecture
to construct a fault tolerance, robust and adaptable vehicle
positioning system.

Figura 6. Adaptive Sensor Fusion Architecture Flow
Chart.

The detailed flow chart is shown in Figure 6. Note that the
shaded blocks are part of the fault detection process. Tests
results given in [4] show that the proposed Kalman filter
based state estimation scheme ensures that the position esti-
mate is always optimal and brings significant benefit to the
data fusion system comparing with the conventional fusion
architecture without fault detection, in particular for the fre-
quent GPS signal loss case. Performance analysis and more
details on this architecture can be found in [4].
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COLLABORATIVE DATA FUSION
SYSTEMS

So far we have considered the case of a single vehicle only.
In real life however, cars are not alone on the road. We may
therefore asks ourselves the following questions: can we
take advantage of the other vehicles proximity and position-
ing data to improve our own position, and if yes, how? The
intelligent vehicle systems (IVS) envisioned here would be
able to communicate their position and navigation informa-
tion through Inter-vehicle communications (IVC). IVS will
be evolving in mobile Ad hoc networks called (MANET)
that give access to valuable real time data, especially high
precision positioning information. However, in terms of
global navigation systems (GNS), individual vehicles in a
given MANET would not have access to the same constel-
lation of satellites. And certainly vehicles with good lines
of sight (LOS) have more precise positioning estimates than
vehicles with a poor LOS. Moreover, some vehicles may
possess high precision DGPS or beacon-based positioning
information to share in the network.

In this section, we will investigate a collaborative position-
ing architecture (CPA) that uses some of the above IVC fea-
tures, along with additional range measurement capabilities,
to ameliorate positioning estimates of neighboring vehicles
in a MANET [5]. Two vehicles at different locations can
have different sets of visible satellites, and by collaboration
the satellite information can be shared between the vehi-
cles [35]. Many research activities are being conducted in
IVS collaborations. See [38] for a more basic, yet good
introduction to IVS research and development. For a little
more technical, but quite outdated now, [39] would be worth
reading. Research in the domain of collaborative navigation
takes many forms for instance Collaborative Driving Sys-
tems (CDS) are studied with applications in what is called
car platoons [40] and [41]. However these kinds of col-
laborations necessitate either costly vehicle-to-vehicle rel-
ative dependence or vehicle-to-infrastructure dependence,
whereas our approach leads to a more inexpensive indepen-
dent navigation. We will treat here only the case of three
vehicles, as shown in Figure 7, which, although limited, is
yet important towards a more general case.

Designing a system solution for accurate estimation of rel-
ative positions of neighboring vehicles based on real-time
exchange of individual GPS coordinates using vehicle-to-
vehicle radio communications is a challenging task [36].

Figura 7. Collaborative positioning architecture.

Prior to performing any detailed analysis of our CPA we
ought to define the scope of our work with conditions under
which our technique could be applied. We thus suppose the
following conditions to be valid:

• All vehicles in the MANET are equipped with neces-
sary navigation items (GPS, DR, IVC sensors, etc.)

• All vehicles have range measurement radars, to pro-
vide precise inter-vehicle distance. Millimeter wave
radars MMW for automotive, studied in [3], would be
appropriate solution to our application for they have a
high Doppler sensitivity and a 200 meters range with
a good precision which is very suitable for our case.

• No vehicle dynamics are considered in the CPA, we
instead used a simple motion model.

• Error covariance matrix on position, heading, and
inter-vehicle distance contains the global errors of ve-
hicle systems.

• No special vehicle frame is considered.

• Coordinate reference system is geodetic altitude, lati-
tude and azimuth.

• No altitude difference is considered, this corresponds
to the case where all three vehicles are located on a
relatively flat plane with a constant altitude.

• Inter-vehicle communications are real time and safe.
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COLLABORATIVE UNCERTAINTY
MINIMIZATION

Therefore, in this distributive, collaborative approach, each
vehicles has its own set of position estimates as well as other
information such as range information from other neighbor-
ing vehicles. To achieve a collective improvement of po-
sition estimates, we consider the geometric data fusion ap-
proach. This method is based on the geometric analysis of
the sensing uncertainty and is motivated by the geometric
idea that the volume of the uncertainty ellipsoid should be
minimized, as illustrated in Figure 8. The resultant fusing
equation coincides with those obtained by Bayesian infer-
ence, by Kalman filter theory, and by weighted least-squares
estimation [42]. The uncertainty ellipsoid encloses a region
in space where the true value most likely exists. The cen-
ter of the ellipsoid is the mean of the measurement and the
ellipsoid boundary represents a distance of one standard de-
viation from the mean [43].

Figura 8. Principle of geometric data fusion approach
in collaborative positioning of vehicles.

Geometric data fusion has been used in many research ap-
plications; [43] and [44] are few examples; and had proven
to be a powerful uncertainty management data fusion tech-
nique. In our paper [5], we show that a collaborative ap-
proach can further improve the position estimate over a con-
ventional data fusion approach. More mathematical details
and performance analysis can be found in the paper [5].

CONCLUDING REMARKS

In this paper, we have surveyed the positioning estimation
problem applied to land navigation systems and reviewed
some of the various sensor fusion techniques usually en-
countered in such systems. We have discussed their relative
performance and limitations. The extended Kalman filter
(EKF) in a centralized data fusion architecture remains a
design of choice for most applications. We have explained
how to make such systems more robust by detecting and
identifying sensor faults. Finally we looked at the possibil-
ity to exploit the presence of several vehicles in the vicinity,
in order to improve ones own position estimate using a col-
laborative and geometric data fusion approach. With the
current evolution of the technologies, positioning sensors
will become more and more easily available and at lower
cost, thus allowing all vehicles to be equipped with such
technologies. In addition, all vehicles are becoming net-
worked and equipped with wireless communication capabil-
ities, thus allowing the use of distributed and collaborative
techniques for navigation and positioning. More embedded
and distributed intelligence is likely to be encountered in
future positioning and navigation systems.
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