
DIFU100ci@
Revista de Difusión Científica, Ingeniería y Tecnologías
Vol. 19, No. 1, Ene - Dic 2025
ISSN:2007-3585
Artículo arbitrado
Publicado: 30 de diciembre de 2025

Exploring the Optimal Battery Sizing in
Grid-Connected PV Systems: A Comparative Study

of PSO and GA in Oax, Mx

Exploración del dimensionamiento óptimo de baterı́as en sistemas FV
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Abstract
The optimal sizing of Battery Energy Storage Systems is crucial for maximizing the efficiency and

output of grid-connected photovoltaic (PV) systems. This study explores Particle Swarm Optimization
(PSO) and Genetic Algorithm (GA), both aimed at minimizing total system costs. The analysis evaluates
several performance indicators, including total life cycle cost, optimal battery capacity and power ratings,
integrated Levelized Cost of Energy (LCOE), and charge/discharge energy profiles. The results indicate that
GA achieves a total cost reduction of approximately 3-4% compared to PSO, alongside a modestly lower
integrated LCOE. However, PSO displays enhanced control over discharge depth, yielding a more stable state
of charge trajectory.

Keywords— Battery storage, grid-connected PV, PSO

Resumen
La dimensión óptima de los Sistemas de Almacenamiento de Energía en Baterías es fundamental

para aprovechar el potencial de las plantas fotovoltaicas (FV) conectadas a la red. Este estudio evalúa la
Optimización por Enjambre de Partículas (PSO) y el Algoritmo Genético (AG), con el objetivo de minimizar
los costos totales. Los indicadores de rendimiento evaluados incluyen el costo total del ciclo de vida, la
capacidad y potencia óptimas de la batería, el Costo Nivelado de Energía integrado (LCOE) y los perfiles de
energía de carga/descarga. Los resultados revelan que el AG resulta en un costo total entre un 3% y un
4% menor que el obtenido con PSO, así como un LCOE ligeramente inferior. Sin embargo, PSO muestra un
control superior sobre la profundidad de descarga, lo que resulta en una trayectoria de carga más uniforme.

Palabras clave— Almacenamiento de baterías, FV conectada a la red, PSO

I. Introduction

I n recent years, the integration of renewable energysources into electrical grids has gained significant
global momentum [1, 2, 3]. This trend primarily

arises from increasing energy demand, growing environ-

*Corresponding author

mental concerns, and the urgent need to address climate
change, [4, 5, 6, 7].
Photovoltaic (PV) generation stands out among renew-

able technologies. It produces minimal greenhouse gas
emissions. Its installation costs are declining. PV systems
are scalable and suitable for both small rooftop installa-
tions and large utility installations [8]. However, solar
irradiance is highly variable due to weather changes, sea-
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sons, and daily cycles. This variability causes operational
challenges. These include supply instability, voltage fluc-
tuations, and mismatches between generation and de-
mand [9, 10, 11].
The Battery Energy Storage Systems (BESS) are widely

recognized as an effective solution for managing fluc-
tuations in energy production [12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22]. By storing excess PV energy during
periods of high sunlight and releasing it during times of
low production or peak demand, BESS enhances flexibil-
ity, reliability, and overall power quality [23, 24, 25, 26,
27, 28, 29]. However, the high initial cost of batteries
makes optimal sizing crucial [30]. Oversizing a BESS
can lead to excessive investment and underutilization,
while undersizing can result in curtailed PV energy out-
put, reduced reliability, and increased operational costs.
Classical optimization techniques often struggle with the
non-linear, multi-modal, and constraint-rich nature of
PV–BESS sizing [31].
Metaheuristic algorithms particularly Particle Swarm

Optimization (PSO) and Genetic Algorithm (GA) have at-
tracted increasing attention in the recent literature, [32,
33, 34, 35, 36]. In [37], a binary PSO is proposed to
optimize hybrid energy generating systems (HEGS) in
the Galapagos Islands, Ecuador, offering a simple and
powerful tool for efficient energy system sizing. In an-
other study, the authors propose the PSO technique to
achieve optimal sizing of the hybrid energy storage sys-
tem (HESS) and an improved low-pass filter for electric
vehicle applications, achieving considerable performance
[38].
Other work proposes a hybrid technique that combines

an extended Kalman filter (EKF), PSO, and long short-
term memory (LSTM), achieving an excellent accuracy
and robustness, [39]. As to approaches GA, a study’s
whole objective is to solve a constrained chance model for
optimizing the expansion of energy storage (ESSs) and
renewable energy integration in an electric grid which
considers the initial investment cots for energy storage
and renewable energy, as well as conventional generation
systems to meet load demand, [40].
In other work, the author applies GA to determine the

optimal configuration of subsystems, specifically includ-
ing the battery capacity, for an autonomous renewable
energy multi-source system [41]. In [42], a GA-based
method is proposed to determine the optimal energy
and power capacities of energy storage systems (ESS) in
microgrids.
Other interesting work presents a methodology for

the optimal sizing of stand-alone PV/Wind-Generator
systems, including the determination of the optimal num-
ber and type of batteries, by minimizing the 20-year
total system cost. The collective behavior of biological
populations, such as bird flocks or fish schools, inspires

PSO. Particles explore the decision space cooperatively
by sharing information on promising regions. GA, by
contrast, emulates natural selection through crossover
and mutation, balancing exploration and exploitation
across generations. Both algorithms have shown the abil-
ity to deliver near-global optima within reasonable com-
putational timeframes for complex, non-convex problems.
However, their performance may vary depending on prob-
lem specifics and parameter tuning [43, 44, 45, 46, 47,
48, 49].
This study presents a thorough comparison of PSO

and GA for optimizing the sizing of Battery BESS in grid-
connected PV systems in Oaxaca, Mexico. The analysis
utilizes hourly profiles of irradiance and temperature
from the National Solar Radiation Database (NSRDB-
NREL) for the period spanning January 1, 2024, to De-
cember 31, 2024, based on approximate coordinates of
17.06° N and 96.72° O. The analysis focuses on several key
performance indicators, including total system cost, opti-
mal battery capacity and power, LCOE, and charge/dis-
charge energy profiles—all of which play a crucial role
in the practical design of PV-BESS systems.
This study makes three significant contributions:

Development of a unified optimization model inte-
grating PV power estimation, detailed battery dy-
namics, mismatch penalties, and maintenance costs.
Implementation of calibrated PSO and GA solvers
with identical population sizes and iteration limits,
allowing for a fair, side-by-side comparison.
Execution of a 360-day simulation to evaluate trade-
offs between economic performance (total cost,
LCOE) and operational behavior (state-of-charge
profile, depth of discharge).

The remainder of this paper is organized as follows:
Section 2 presents the mathematical formulation, includ-
ing the objective function and system constraints. Sec-
tion 3 describes the optimization methodology and pa-
rameter settings. Section 4 discusses the results obtained
with PSO and GA, including both a representative-day
case study and a year-long simulation. Finally, Section 5
presents the conclusions and outlines directions for future
work and real-world deployment.

II. Problem formulation

The optimization problem concerns a grid-connected
(PV) plant equipped with a BESS. The aim is to choose the
24-hour battery set points that minimize the total daily
operating cost while satisfying all physical constraints.
The formulation comprises three parts: the PV generation
model, the battery state model, and the cost function.
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II.1. Photovoltaic power model
PV output depends on solar irradiance and cell tem-

perature. Cell temperature is estimated from ambient
temperature by the empirical relation

Tcell(t) = T +
GHI(t)

800

(
TNOCT − 20

)
, (1)

where T is ambient temperature (°C), GHI is global hor-
izontal irradiance (W m−2), and TNOCT is the nominal
operating cell temperature [4]. The impact of tempera-
ture on module efficiency is

ηloss(t) = 1− λ
(
Tcell(t)− 25

)
, (2)

with λ the temperature coefficient and 25 ◦C the standard
test condition reference. The DC power produced at hour
t is therefore calculated by:

PPV (t) = CPV
GHI(t)

SSTD
ηloss(t) ηDC/DC , (3)

where CPV is the nominal PV capacity (kW), SSTD =
1000Wm−2 is the standard irradiance, and ηDC/DC is
the DC–DC converter efficiency, explicitly set as:

ηDC/DC = 0.95 (4)

II.2. Battery energy storage model
Let the state of charge be CBES(t) (kWh) and the bat-

tery power set point be PBES(t) (kW, positive when charg-
ing). At the beginning of the day the SoC is initialized to
the mid point between its limits

CBES(0) =
Cmax

BES + Cmin
BES

2
. (5)

For each subsequent hour, the dynamic model for the
state of charge (SoC) is given by:

CBES(t+ 1) = min
[
CBES(t) + PBES(t) ηcharge, C

max
BES

]
,

(6a)

CBES(t+ 1) = max
[
CBES(t) +

PBES(t)
ηdischarge

, Cmin
BES

]
, (6b)

where (6a) applies when PBES(t)≥ 0 (charging) and (6b)
when PBES(t)< 0 (discharging). To maintain the feasi-
bility of the SOC over the upcoming hour, it is imperative
that the set point adheres to the established dynamic
constraints.
Pmax
BES (t) = min

[
Cmax

BES − CBES(t),
(CBES(t)−Cmin

BES) ηdischarge

∆t

]
,

(7a)

Pmin
BES(t) = max

[
Cmin

BES − CBES(t),
CBES(t)−Cmax

BES
ηcharge ∆t

]
, (7b)

and we enforce
PBES(t) ∈

[
Pmin
BES(t), P

max
BES (t)

]
. (8)

II.3. Cost function
With demand D(t), the supply–demand mismatch is

∆(t) = PPV (t) + PBES(t)−D(t).

The hourly costs Cmis(t) = cm|∆(t)|, Cmnt(t) =
cmnt|PBES(t)|, Cpen(t) = kp max

{
0, −∆(t)

} are mis-
match, maintenance, and unserved load, respectively.
and the total daily operating cost to be minimized is

min
PBES(t)

24∑

t=1

[
cm |∆(t)|+ cmnt |PBES(t)|+ kp max{0, −∆(t)}

]

(9)
where the coefficients are determined as follow, cm =
0.30 MXN kWh−1 [50], cmnt = 0.25 MXN kWh−1 [30],
kp = 100 MXN kWh−1. The large value kp≫cm reflects
the contractual penalty for unserved demand. Equations
(2)–(9) define a non convex optimization problem with
24 continuous decision variables PBES(1), . . . , PBES(24)
limited by the inverter rating

PBES(t) ∈ [−30, 30] kW.

The LCOE is explicitly calculated as follows:

LCOE =
1

∑T
t=1 D(t)

T∑

t=1

(cm|∆(t)|+ cmnt|PBES(t)|

+ kp max{0,−∆(t)}) (10)

where T = 360 days. For this extended evaluation, daily
profiles of solar irradiance, ambient temperature, and
power demand are considered. The cumulative daily op-
erational and energy-related costs provide an annualized
LCOE. Since conventional solvers are prone to local op-
tima, we resort to meta-heuristic algorithms, specifically
PSO and GA, whose detailed configurations are presented
in Section III.

III. Methaheuristic Optimization: PSO ans GA

This section describes the configuration and execution
of the two metaheuristic solvers (PSO and GA) used to
optimize the 24-element battery power vector

PBES =
[
PBES(1), . . . , PBES(24)

]T
.

III.1. Search Space and Common Settings
The optimization variables comprise a 24 dimensional

real valued vectorPBES , where each component PBES(t)
denotes the battery charge/discharge power (kW) at hour
t. Each variable is constrained to

PBES(t) ∈ [−30, 30] (kW),
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To ensure a fair comparison between the PSO and GA,
both solvers will use identical settings. The population
size consists of 30 candidate solutions, which refer to
particles in PSO and individuals in GA. The iteration limit
is set to 100 for both PSO and GA. The convergence cri-
terion states that the process should stop if the relative
improvement in the best cost falls below 10−5. For repro-
ducibility, a fixed random seed is used. For constraint
handling, after each update, any values of PBES(t) that
fall outside the range [−30, 30] will be clipped back into
this range before evaluating the cost. In terms of objec-
tive evaluation, for each candidate solution, the battery
dynamics will be simulated using Equations (5) to (7).
The simulation will accumulate mismatch, mainte-

nance, and penalty costs, ultimately allowing for the
computation of the total cost as described in Equation
(9). All other parameters (e.g. PV data, load profiles, cost
coefficients) are held identical. Both PSO and GA adhere
to the same evaluation loop:

1. Initialization. Generate population {x0
i } (and {v0

i }
for PSO).

2. Evaluation. For each xk
i :

Compute PV output PPV (t) via (3).
Simulate SoC via (5)–(6b), enforce (7a)–(8).
Compute total cost f(xk

i ) by (9).
3. Update.

PSO: update vi,xi by Equations (13) and (14);
refresh personal/global bests.
GA: produce next generation via selection,
crossover, mutation, elitism.

4. Convergence. Stop if iteration/gen = 100 or best
cost improves by < 10−5 over 20 steps.

5. Logging. Record best and mean costs for conver-
gence plots.

III.2. Particle Swarm Optimization
We apply PSO to the 24-hour scheduling problem

defined by Eqs. (5)–(6b) and objective (9), subject to
power limits (7a)–(8). Each particle i holds a 24 vector
xi ∈ [−30, 30]24. Initialize

x0
i ∼ U

(
[−30, 30]24

)
, (11)

v0
i ∼ U

(
[−vmax, vmax]

24
)
, vmax = 15 . (12)

Set personal best pbest
i = x0

i , and global best gbest =
argmini f(x

0
i ). At iteration k+1, update velocities and

positions via

vk+1
i = w vk

i + c1 r1
(
pbest
i − xk

i

)
+ c2 r2

(
gbest − xk

i

)
,
(13)

xk+1
i = xk

i + vk+1
i , (14)

where r1,2 ∼ U(0, 1). After each update, clip |vi,t| ≤
vmax y xi,t ∈ [−30, 30] The parameters are determined
as follow w = 0.7, c1 = c2 = 1.5, vmax = 15kW, N = 30,
Kmax = 100.

III.3. Genetic Algorithm (GA)
GA evolves a population of 30 chromosomes, each

encoding x ∈ [−30, 30]24. Details:
The initialization process starts by selecting 30 individ-

uals randomly within the range of [−30, 30]24. We evalu-
ate how well each individual performs using the fitness
function f(x) described in Equation (9). For selecting
individuals, we use a tournament method with a size
of 3. During crossover, we apply single-point crossover.
We randomly choose a cut point p from {1, . . . , 23} to
combine the genes of two parents. In the mutation phase,
each gene has a 5% chance of changing. If it does, we
add a value from the normal distribution N (0, σ2) where
σ = 3 kW. We make sure any resulting values stay within
the range of [−30, 30]. We use an elitism strategy, where
we copy the best individual directly into the next gener-
ation without changes. The parameters for this process
are: population size (Pop) is 30; tournament size is 3;
mutation rate is 5%; elitism is 1; the number of genes is
100; crossover size is 1; and σ is 3 kW.

IV. Results
IV.1. convergence analysis for optimization algo-

rithms
First, a representative day (24 h) is analyzed in depth to

illustrate how each optimizer converges, how the battery
is dispatched, and how these decisions translate into cost
components. Second, the optimization is repeated for a
full 360 day synthetic year to verify that the day scale
conclusions remain valid in long term operation. Figure 1
shows how PSO very quickly collapses to its final objective
value, with the average (dashed) curve catching up by
around iteration 40. Also the algorithms track the best
and average objective value versus iteration for PSO and
GA, respectively. Both algorithms stabilize well before the
100 iteration limit, but PSO requires fewer evaluations
to reach its plateau, reflecting faster exploitation of the
search space.

IV.2. A comparative analysis of power.
Figures 2 and 3 superimpose the optimal battery power

with PV generation and demand. For PSO, the battery in-
jects fewer large spikes, smoothing the net load curve; GA,
while economically attractive, schedules slightly deeper
discharge events, visible as larger negative excursions.
Table 1 confirms that GA attains the lowest total cost

and integrated LCOE, albeit at the expense of marginally

DIFU100ci@ Vol. 19, No. 1, Ene - Dic 2025 ISSN:2007-3585

52



Exploring the Optimal Battery Sizing in Grid-Connected PV Systems: A Comparative Study of PSO and GA in Oax, Mx

Figure 1: Best-cost convergence vs. iterations: PSO (solid) and
GA (dashed).

Figure 2: Hourly power balance obtained with PSO. Positive val-
ues indicate charging or surplus PV, negatives corre-
spond to battery discharge.

Figure 3: Hourly power balance obtained with GA. GA follows
similar trends but allows deeper battery discharges
during evening peaks.

higher battery cycling (discharge of 150 kWh versus 139
kWh for PSO).

Table 1: Performance metrics for the representative day.

Metric PSO GA
Total cost (MXN) 94 039.35 96 696.38
Integrated LCOE (MXN/kWh) 218.19 228.83
Stored energy (kWh) 462.75 446.88
Discharged energy (kWh) 139.36 150.00

IV.3. A year-long analysis of Levelized Cost of Energy
(LCOE).

To validate scalability, each optimizer is re run day by
day for a 360 day synthetic year. The resulting trajectories
highlight systematic differences. Figures 4 and 5 depict
the daily integrated LCOE. GA retains an average $ 4 %
advantage, but both methods exhibit comparable vari-
ance, indicating stable operation over seasonal irradiance
changes.

Figure 4: Daily integrated LCOE over 360 days – PSO.

As you can see in Figure 4, PSO maintains a very con-
sistent LCOE curve with small variance day–to–day.

Figure 5: Daily integrated LCOE over 360 days – GA.

In contrast, Figure 5 shows that GA runs about 3–4 %
lower on average but with slightly more scatter.
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IV.4. Analysis of costs associated with mismatches,
maintenance, penalties, and state of charge

Figure 6: Generated, stored and discharged energy per day –
PSO.

Figure 7: Generated, stored and discharged energy per day – GA.

Figures 8 and 9 show logarithmic cost-component
stacks. GA reduces mismatch cost thanks to aggressive
discharges, whereas PSO pays slightly less penalty by
avoiding demand shortfalls.

Figure 8: Daily cost component distribution – PSO (log scale).

Figures 10 show the mean daily SoC envelope. PSO has
a narrower SoC band, indicating a lower cycle depth and
potentially longer battery life. GA consistently reduces
costs by 3–4%, while PSO achieves up to 8% lower aver-
age depth of discharge, which can extend cell lifetime.
Thus, the choice of optimizer depends on whether stake-

Figure 9: Daily cost component distribution – GA (log scale).

holders prioritize immediate savings (GA) or long-term
asset preservation (PSO).

Figure 10: Battery SoC profiles: PSO (solid) and GA (dashed)
over 24 h.

V. Conclusions

The GA achieved 3–4% lower operating costs in 85%
of the 360-day simulations due to its more aggressive
discharge scheduling. Conversely, PSO demonstrated 8%
better battery preservation by using reduced Depth of
Discharge (DoD) and narrower SoC ranges. Additionally,
PSO converged 33% faster, while GA was more adept at
escaping local minima. Both methods showed consistent
seasonal performance. For projects aimed at minimizing
costs, GA is the preferred choice, whereas PSO’s gentler
cycling benefits battery longevity.
As future work, it is planned to integrate models and

explore optimization methods of metaheuristics to an-
alyze the performance differences between the studied
methods, including an evaluation of performance varia-
tion under different scenarios of irradiance, load profiles,
and battery degradation models to improve robustness
and generalizability of the optimal sizing.
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