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Abstract

The Kalman filter was applied in the reconstruc-
tion of trajectories that present data loss. The tra-
jectories were obtained by tracking a rat’s swim
from video sequences in the Morris water maze tests.
These video are being used in neuroscience studies
in spatial memory tests. In this work, the Kalman
filter showed to be a good alternative to estimate
position and velocity when some measurement data
have been lost. The reconstruction was successfully
accomplished for long and short data losses. The
percent root mean square error shows a value less
than 2% in the worst case when short paths were
tested. For longer paths the error is less than 0.5%.
The algorithm can be applied in other behavioral
tests for different kind of mazes. For example, in the
Guinea pig maze and elevated Y maze, where is not
unusual to have obstruction of the observation path.

Keywords— Kalman filtering, Morris maze, data reconstruc-
tion.

I Introduction

The Kalman filter is a mathematical procedure that oper-
ates by means of a prediction and correction mechanism.
In essence, this algorithm predicts the new state of a

system from its previous estimation, adding a correction term

proportional to the prediction error, in such a way that the
latter is statistically minimized. The filter was introduced by
Rudolf E. Kalman (1960) [10]. In this work, the filter was
applied in the reconstruction of swimming trajectories in the
Morris water maze. The data were obtained by a computer
vision system that performs the tracking of a rat in a pool.

The detection and tracking of an object on an aquatic sur-
face is complicated by the reflections of lights or other strange
objects on the water. In [17] it is proposed to solve the problem
in different ways: a) incorporating a trajectory correction algo-
rithm in the video capture system, and b) applying elements of
artificial intelligence to take into account the prehistory of the
object to estimate its present and future position. It should be
mentioned that sometimes the complication is due to occlusion,
or unwanted shadows on the object being tracked.

In this work, there is no access to the video capturing system.
It is known, however, the available data files present loss of
data due to several factors, like light reflections and undesirable
shadows.

The paper is organized as follows. In Section II the exper-
iment called Morris water maze is described, together with
materials and methods, like the Kalman filter in subsection II.1
and the system model used in subsection II.2. Section III shows
the performance of the filter in different tests. In a first test
the trajectory was obstructed intentionally by an object. Later,
the Kalman filter was applied to data files obtained from exper-
iments at the Morris water maze. Some concluding remarks
are given in Section IV.
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II Materials and methods
One test to measure spatial memory and recognition functions
is the Morris water maze [16, 22]. This test is used in neuro-
science, in laboratory rats, to estimate the effect of medications
on neuronal activity [19] and the effect of stressful conditions,
as in [4]. In other works, there is also interest in extracting
movement patterns from video data to generate simulations
based on multiple agents [25], or using data mining on the
movement patterns of laboratory rats to simulate behavior pat-
terns of movement [24].

The system consists of a pool, as shown in Fig. 1, that has a
diameter between 1.5 m to 1.8 m, a submerged platform that
can be removed in some phases of the test.

Figure 1: Typical Morris water maze.

The vision system includes specialized software to track the
trajectory of the rat’s swim, and also provides other parameters.
The parameters of interest are the escape latency, the total
distance traveled, the average speed, the total time of the test,
among others.

As mentioned in the previous section, the data may suffer
disturbances,either due to effects of changes in lighting, or due
to misalignment in the placement of the camera. Occasionally,
the tracking system loses some data from the sequence. In [15]
is reported a system for the analysis of videos in AVI format that
was used in the Health Sciences Laboratory of the Autonomous
University of Zacatecas by the research group in Health and
Environmental Sciences. As shown in Fig. 1, the setup includes
an escape platform and some visual markings. In a first phase,
after several attempts, the rat is able to locate and memorize
the location of the platform.

The test measures the time it takes to find the escape plat-
form. Other parameters of interest are the speed and the total
distance traveled. In a second phase, the platform is removed
and, in addition to the above parameters, the number of times
the rat crosses the area where the platform was located is mea-
sured. In this way an estimate of spatial memory can be made.

Memory can be affected by internal factors, such as some neu-
ronal disease, or external factors, such as noise [4], among
many others.

Figure 2 shows the tracking of the rat’s swim, marked by a
green box on the object and the coordinates of its position in
the upper left corner.

Figure 2: Tracking on the Morris water maze.

In Fig. 3(a) the effect of light reflections is shown, since
there are reflections from the windows. In Fig. 3(b), data loss
occurred due to poor illumination of the object to be tracked.
The loss of data is shown when the green box does not enclose
the object of interest. The name P3R1 file corresponds to the
keywords used in the neuroscience laboratory. For example, P3
is the test number three and R1 is the rat number one. Other
files names used by the Health and Environmental Sciences
group are not relevant in this work because they have no effect
in any of the results.

The interest of applying a reconstruction algorithm goes
beyond the Morris water maze tests. There are other types
of tests where lost of data occurs frequently. That is the case,
for example, in the Guinea pig maze shown in Figure 4. This
maze requires walls high enough to prevent the Guinea pig
jumps from one cell to another. So, these walls can hide the
Guinea pigs or can cause shadows, limiting the effectiveness of
the tracking video system.

II.1 Brief description of the Kalman filter
The Kalman filter is a computational algorithm for estimating
the state vector of a process, in a way that minimizes the co-
variance of the error. It is a recursive filter since it works with
the past, present and predicted future state. An important ap-
plication is in guided navigation systems, vehicle control, and
signal processing. To see different approaches in the develop-
ment of the Kalman filter, [6, 7, 3, 1] can be consulted.Other
approaches in the development of the following equations can
be found in [2, 9]. In this work, the first part is based on [26],
then the development is presented in more detail.
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(a) Data loss due to reflections.

(b) Data loss due to low illumination.

Figure 3: Data loss by reflections and shadows.

The Kalman filter attacks the general problem of estimating
the state x of a discrete-time process which is governed by a
linear stochastic difference equation:

xk = Axk−1 +Buk−1 +Wk−1 (1)
with measurement

zk = Cxk +Vk (2)

where Wk and Vk are noise process and noise measurement,
with probability distributions

P (W ) ≈ N(0,Q), where Q = E[WkW
T
k ] (3)

P (V ) ≈ N(0,R), where R = E[VkV
T
k ],

Q and R are covariance matrices. A, B, and C are discrete-
time system matrix, input matrix, and output matrix, respec-
tively. u is the input or control vector.

An important condition for the Kalman filter, as it is shown
later, is to assume Wk and Vk to be statistically independent

Figure 4: A Guinea pig maze.

white Gaussian noise sources. The Kalman gain, denoted as
K, is obtained by minimizing the error covariance estimate.
Defining an a priori estimate x̂−

k , with the process knowledge
before step k; an a posteriori estimate x̂k at the time step k,
then it is possible to define two errors:

e−k = xk − x̂−
k , a priori error (4)

ek = xk − x̂k, a posteriori error
and two error covariance matrices

P−
k = E[e−k e

−T
k ], a priori error covariance (5)

Pk = E[eke
T
k ], a posteriori error covariance,

where the upper index “-” denotes a priori estimates.
The basis of the Kalman filter is an equation that allows to

compute a posteriori estimate x̂k as a linear combination of
a priori estimate x̂−

k and a weighted difference between the
measurement zk and the predicted measurement Cx̂−

k , i.e.

x̂k = x̂−
k +K(zk −Cx̂−

k ). (6)
The term

(zk −Cx̂−
k ) (7)

in (6) is called innovation or residual. K is a gain factor, an
n×m matrix, that minimizes the a posteriori covariance error.
By substitution of zk in (6)

x̂k = x̂−
k +K(Cxk +Vk −Cx̂−

k ) (8)
and

Pk = E[eKeTk ] = E[(xk − x̂k)(x− x̂k)
T ]. (9)

The requirement is to minimize Pk with respect to K.
Expanding Pk, we have

Pk = E[((I−KC)(xk − x̂−
k )−KVk) (10)

((I−KC)(xk − x̂−
k )−KVk)

T ].

The error (xk−x̂−
k ) is not correlated toVk, so that by taking

the expected value, Pk reduces to
Pk = (I−KC)E[(xk − x̂−

k )(xk − x̂−
k )

T ](I−KC)T (11)
+KE[vkv

T
k ]K

T .
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Letting

E[(x−
k − x̂−

k )(xk − x̂−
k )

T ] = P−
k (12)

i.e. the a priori estimate of Pk, then
Pk = (I−KC)P−

k (I−KC)T +KRKT (13)
is an error covariance update.
Finally, taking the derivative with respect to K, letting the

result equal to zero, and solving for K, the Kalman gain is

K = P−
k CT (CP−

k CT +R)−1. (14)
A brief description of the Kalman filter is explained in the

Algorithm 1. The Kalman filter can be developed in two stages:
a prediction stage, and an update stage.

Algorithm 1 Kalman filter
1: Given initial estimates x̂−

k and P−
k−1

2: procedure P��������� �����
3: Project state forward:
4: x̂k ← Ax̂−

k +Bu−
k +w−

k

5: Project error covariance forward:
6: P−

k ← AP−
k−1A

T +Q.
7: procedure C��������� �����
8: Calculate Kalman gain:
9: K ← P−

k CT (CP−
k CT +R)−1.

10: Update estimate with measurement zk
11: ie: x̂k ← x̂−

k −K(zk −Cx̂−
k ).

12: Update covariance error with optimal Kk:
13: Pk ← (I −KkC)P−

k .
14: goto 2 and let x̂−

k ← x̂k and P−
k−1 ← Pk.

II.2 System model
The system is modeled by a vector of states X, and a set of
equations called the system model. The observation time has
the form tk = t0 +Δt, where Δt is the sampling interval. We
define Xk as the state in time tk. Also, we assume that Δt is
small so that we can use a linear model. The state vector is:

Xk = (xk yk Vxk Vyk ) (15)
The state equation is



xk

yk
Vxk

Vyk


 =




1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1







xk−1

yk−1

Vxk−1

Vyk−1


+




w1

w2

w3

w4




(16)
and the measurement equation is



xk

yk
Vxk

Vyk


 =

�
1 0 0 0
0 1 0 0

�



xk

yk
Vxk

Vyk


+

�
µ1

µ2

�
, (17)

where xk and yk represent the position coordinates; Vxk

represents the speed in the direction x, and Vyk represents the

speed in the direction y. In addition, wk and µk model system
errors and measurement errors, respectively. It should be noted
that the measurement vector corresponds to the data obtained
by the video analysis, that is, it is only necessary to read the
data file obtained in [15].

The parametersQ andR refer to the process noise covariance
and measurement noise covariance matrices. In the context of
tracking objects in video, R means the detection error. The R
matrix describes the uncertainty about the location of the ob-
ject. So, for the (x, y) coordinates, the corresponding diagonal
values of R should be a few pixels. In this application R was
set to:

R =

�
10 0
0 10

�
(18)

On the other hand, Q specifies how much the actual motion
of the object deviates from the model. A rule of thumb is to set
Q not equal to zero.

In this application Q was set to:

Q =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (19)

The sampling time corresponds to a video of 30 frames per
second (fps).

III Results and Discussion
To show the performance of the Kalman filter in the recon-
struction of trajectories with data loss, a test was made in the
tracking of an object which is obstructed by another object. It
is worth noting that this is an extreme case, where there is
considerable data loss.

In Fig. 5, frames of a video sequence are presented, where
the tracking algorithm shows, with points in blue, the detected
position of the object. The tracking algorithm presented in [15]
delivers data points based on the color of the object. In this
case the object of interest is in red, while the points in blue are
the detected position.

Following the sequence of Fig. 5(a) to Fig. 5(d) it is shown
how trajectory data is lost due to obstruction by another object.
This is an example of a big data loss, because the obstruction
remains for several sampling points.

After applying the Kalman filter, the trajectory shown in
Figure 6 was obtained. It can be seen how the filter has in-
cluded new points in the trajectory, that is, the points shown
in red are the result of the estimation made by the filter, at the
corresponding sampling points.

It can be seen, the Kalman filter has reconstructed at least
three missing paths, according to the image shown in Figure
6. One important point here is, as soon as a new data sample
is available, the filter delivers some points that follow an esti-
mated trajectory, which gets close, with some error, to the real
trajectory in the next sample points.

III.1 Reconstruction in the Morris water maze
The Kalman filter was applied to data obtained from some
video files. It is worth to remark, these are not simulation data
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(a) Beginning of the path.

(b) First obstruction.

(c) Second obstruction.

(d) The following path after obstruc-
tions.

Figure 5: Data loss by obstruction of the object.

points, because in that case it would be easy to measure the
true estimation error.

Figures 7 and 8 show the results for two data files. In every
case, data points in blue are those (x, y) points obtained from
the analysis of the video sequence. Data points in red are the
estimated data points delivered by the Kalman filter.

In the first two data files, there is no significant number of
missing points. In these two cases the filter follows the original
trajectory very closely. Even when the length of the data file
FR2L is larger than Datz, there is only one isolated red point,
in the last case. That means, it is a missing data point at that
sampling time.

On the analyzed P3R1 file, shown in Figure 9, it can be
observed more missing data points, according to the isolated
red points. Here is when the Kalman filter is useful.

A more demanding case is in when the original rat tracking
data had lost several sampling data points. So, it is expected
the Kalman filter “fills” that missing points. Figures 10 and 11
show the path reconstructed by the Kalman filter.

As it was shown in Figure 3(a), sometimes there is loss of
data due to low illumination on the object of interest. However,
the Kalman filter recovers the trajectory of the rat, as shown in

Figure 6: Reconstructed trajectory by Kalman filter.

Figure 7: Original and reconstructed trajectory for Datz data
file.

Figure 12. Those are the points at the right side of the path.

III.2 Root mean square error in the reconstructed
trajectory

It can be seen from Figure 6, the Kalman filter is able to recon-
struct, within some error margin, the best possible trajectory.
As it was described in Section II.1, the algorithm is a two stages
process: a prediction stage, and an update stage. This last
stage is also known as the correction stage. That means, there
is also an error estimation in each sample period. In fact, when
the tracking trajectory changes abruptly, the bigger the error
the bigger the corection made by the filter.

One clarifying point is the following, sometimes, the Kalman
filter is compared to other estimation methods. For example,
for nonlinear systems, the comparison is made using the ex-
tended Kalman filter [21], the unscented Kalman filter [8], and
an unbiased FIR filter [18]. The success of the comparison re-
lies on (position and velocity) simulated data. In addition, the
simulated data can be perturbed with noise to model an hypo-
thetical measurement problem. A similar simulation example
can be found in [26].

A further comment is the following, when faced with ana-
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Figure 8: Original and reconstructed trajectory for FR2L data
file.

Figure 9: Original and reconstructed trajectory for P3R1 file.

lyzing time series data, fitting splines may seem interesting.
That approach essentially is a fitting approach rather than a
modelling approach, so it is not considered here.

In this work, we are dealing with experimental, not simu-
lated, data. Even in the experimental setup of Figure 5, we
cannot compare a real trajectory, but a data trajectory, which
contains acquisition (video capturing) and measurement errors.
The Kalman filter is proposed as a solution for this particular
application. Comparing the performance of the Kalman filter
with other estimation algorithms is not the main scope of this
work.

If there are some missing points, even when the Kalman
filter delivers an estimation, the error will be calculated only
on each new data sample. A good example of the assessment
of a tracking problem can be found in [11], where real and
desired joint trajectories are compared by means of root mean
squared error graphs, from real data of the implementation.

A quantitative measure can be made by taking the root mean
squared error (RMSE) between blue and red trajectories shown
in Figures 7 to 12. According to [23] a way to compare two

Figure 10: Original trajectory FR4L.

Figure 11: Reconstructed trajectory FR4L.

images can be done by

RMSE =

���� 1

MN

M�

x=1

N�

y=1

(p[x, y]− p̂[x, y])2 (20)

where the size of the image isM×N , p and p̂ are the original
image pixels and the estimated image pixels, respectively.

Because we have trajectory (x, y) data points, the overall
error index root mean square error (RMSE) was determined
using the following expression:

RMSEx =

���� 1

N

N�

x=1

(ex)2 (21)

RMSEy =

���� 1

N

N�

y=1

(ey)2

where ex and ey are the difference between the input trajec-
tory coordinates and the estimated trajectory coordinates at
each sample point, and N is the number of (x, y) points used.

14



DIFU100ci@ Vol. 14, No. 1, Enero - Abril 2020 ISSN:2007-3585

Figure 12: Reconstructed trajectory after low illumination data
loss (at right side of the path) P3R1b.

RMSEx and RMSEy are the root mean square error in the x
and y direction, respectively.

Finally,

RMSExy =
�

RMSE2
x +RMSE2

y (22)
where RMSExy represents the 2D root mean square error.

In addition to the calculation of RMSExy, the percentage
error was obtained. In this way, a better insight of the error is
shown. To do so, it was considered the total length in meters of
the trajectory, which is obtained by calibrating the experimental
setup, and the accumulated RMSExy.

Table 1 shows, for each trial, the trajectory length in meters,
the total RMSExy in meters, and the percentage error. From
the results, it can be observed the performance of the filter
improves for longer paths, i.e, the RMSExy gets a value less
than 0.5 % for FR2L and FR4L tests.

Table 1: RMSE between original and estimated trajectory using
Kalman

Data file distance (m) RMSExy (m) % error
Datz 2.6379 0.045338 1.7187
FR2L 6.9905 0.028867 0.41295
P3R1 4.2923 0.044839 1.0459
FR4L 10.506 0.048616 0.46273
P3R1b 3.2974 0.04309 1.3068

III.3 Kalman and double exponential smoothing
comparison

For a comparison of the Kalman filter performance against
other estimationmethod, in this section, the double exponential
smoothing is presented. Exponential smoothing is based on a
moving average filter, so it is first reviewed.

A type of finite impulse response (FIR) filter is the moving
average calculation or moving average (MA) filter. The MA
filter is useful to analyze data points to smooth out short-term

fluctuations by creating a series of averages of different subsets
of the full data set. For details about the basics of smoothing
filters see [20, 14, 13].

A moving average of order m, called m-MA, can be written
as

ŷn =
1

m

K�

k=−K

yn+k (23)

where m = 2K + 1. The estimate of the trend-cycle at time
n is obtained by averaging values of the time series within K
periods of n.

Weighted moving average is a variation of the m order MA
method. In general, a weighted m-MA can be written as

ŷn =

K�

k=−K

akyn+k (24)

where the weights are given by [a−k, ..., ak]. The weights
are symmetric so that ak = a−k. The simple m-MA is a special
case where all of the weights are equal to 1/m.

Finally, exponential smoothing methods (exponential moving
average, EMA) are weighted averages of past observations,
with the weights decaying exponentially as the observations
get older.

EMA uses weighted averages, where the weights decrease
exponentially, the further the data come from the past, the
smallest the weights, i.e, the smallest weights are associated to
the oldest data.

yn+1 = αyn + α(1− α)yn−1 + α(1− α)2yn−2 + . . . (25)

where 0 ≤ α ≤ 1 is the smoothing parameter. The rate at
which the weights decrease is controlled by the parameter α.

For the calculation of the DEMA we use the following steps:
• Step 1: Calculate the exponential moving average of order

m, EMAm

• Step 2: Apply an EMA with the same order m to EMAm

and get a smoothed EMA.
• Step 3: Multiply two times the EMAm and subtract the

smoothed EMA.
The equation can be written as:

DEMA = 2× EMAm − EMA. (26)

After this brief review, we compare the Kalman filter to MA
methods. According to LaViola, a faster alternative to Kalman
filter predictors, with no need of measurement models, is the
double exponential smoothing or DEMA as it is called here
[12]. The author describes the details of a predictor experiment
and claims the DEMA predictor is faster, easier to implement,
and perform equivalently to the Kalman and extended Kalman
filtering predictors.

An additional support for this comparison is given in [5],
where it is shown that double exponential smoothing can model
motion by a simple linear trend equation.

The results, including %RMSExy, for the DEMA algorithm
are given in Table 2.
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Table 2: RMSE between original and estimated trajectory using
DEMA

Data file distance (m) RMSExy (m) % error
Datz 2.6379 0.029764 0.78714
FR2L 6.9905 0.024518 0.35073
P3R1 4.2923 0.037691 0.87811
FR4L 10.506 0.044768 0.42611
P3R1b 3.2974 0.025732 0.78037

For a comparison between the Kalman filter and the DEMA
filter, Table 3 shows the %RMSExy obtained in each case. The
error in the DEMA filter is slightly smaller than Kalman error in
three tests. Only in the last two tests, the Kalman filter shows
almost 50% smaller error than the DEMA filter. This appears
to be a surprising result, but indeed agrees with the statement
made in [12].

Table 3: % RMSExy between Kalman and a DEMA filter

Data file Kalman DEMA filter
Datz 1.7187 0.78714
FR2L 0.41295 0.35073
P3R1 1.0459 0.87811
FR4L 0.24784 0.42611
P3R1b 0.41263 0.78037

Finally, a mandatory comparison is the time spent by each
method. Just to name a few, for two data files, Kalman filter
needed 23.09 and 12.977 seconds for the P3R1 and the Datz
files respectively, while DEMA only needed 0.11 and 0.035
seconds.

III.4 Velocity profile estimations
The description of the system includes (see Eq. 15) other
unmeasured states, in this case the velocity of the object. So, it
is possible to estimate the swimming speed between samples of
the video sequence. In addition, once (x, y) position estimates
are obtained, and knowing the sample rate, velocities can be
calculated between a pair of consecutive data points. A distance
calculation can be performed by the well known rule of distance
between two points.

Figure 13 shows the velocity profile in the x direction for
one data file. Obtaining the velocity profile is important in
neuroscience studies where the test involves also the effects in
the neuronal motor system.

A good representation of the behavior of the rat during the
tests, i.e., spatial memory, movement speed related to neuronal
motor system, among others, is very important.

In all behavioral studies, when tracking a living being, is
common to face data loss problems. In this work it is shown
one of several approaches, that is, the Kalman filter.

IV Conclusions
The Kalman filter was proposed for the estimation of trajec-
tories in the Morris water maze, based on incomplete data.

Figure 13: Velocity estimation of the rat’s swim.

In this case, the data do not come from a simulation but are
laboratory data. It was shown that the Kalman algorithm has a
satisfactory performance in the estimation of incomplete data,
besides that it allows to estimate other parameters of the test,
such as the swim speed, and the total distance traveled. With
the data obtained, important information can be obtained for
studies in neurosciences, such as the distribution of the trajec-
tory in the maze, the speed of swimming to study effects in the
motor system, and the escape latency in spatial memory tests.
The algorithm can be applied in other behavioral tests where
different kind of mazes are used, for example in the Guinea
pig maze, and elevated Y maze, where is not unusual to have
obstruction of the observation path.
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