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Abstract

Some computational limitations when it is in-
tended to calculate harmonic numbers for very large
n values are analyzed. A reformulation of Euler’s
theorem is proposed, with which the range of its
numerical calculation is extended. Two interesting
results are reported, in the first one, an approximate
growth rate ΔH = 2.3026/decade is defined, which
follows immediately from Euler’s theorem. In the
second, for n = 10p, where p can be as large as
p = 10307, it is proposed Hn to be Hn ≈ M p + γ,
i.e., p = log(n) times a constant M (plus γ), which
is also given, and log is the base 10 logarithm. The
proposed approach was also compared with other
well known specialized software libraries and com-
putation environments to emphasize the important
savings in computation time and numerical range.

Keywords— Harmonic numbers, Euler’s approximation, di-
vergence rate

I Introduction

I n the 18th century, Leonhard Euler [8] proposed that the
sum of the inverse of the first n natural numbers, given by
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could be approximated as ln(n) plus a constant γ, that is,

Hn ≈ ln(n) + γ = HEn (2)

where the approximation is denoted, in this work, as
HEn , that is, Euler’s approximation, and γ is known
as the Euler-Mascheroni constant, calculated as γ =
0.57721566490153286060651209008240243104215933593992
[1]. Hn given by (1) are called harmonic numbers.

On the other hand, for centuries it is known this problem
has fascinated the mathematicians. It is also known the origin
is related to the vibration of strings. It is so named because the
wavelength of the harmonics of a vibrating string is inversely
proportional to the length of that string according to the series
of unit fractions: 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, . . .

An ancient application is due to the famous philosopher
Pythagoras who found the numerical proportion is responsible
for musical harmonies. An interesting problem, discovered by
[25] is to determine how far an overhang we can achieve by
stacking dominoes over a table edge, accounting for the force
of gravity, in which solution appear harmonic numbers. More
recently, in financial markets, which all show harmonic and
repetitive swings that are inherent in each particular market
[20, 18], just to name a few applications. Going into the details
of these applications is not the objective of this work.

To have an idea of the use of very big numbers, let us start
with Carl Sagan who pointed out that the total number of el-
ementary particles in the universe is around 1080 [4]. There
are many other examples in Physics and Cosmology, and for a
second example, let us refer to Max Tegmark who, in a multi-
verse or parallel universes theory, discusses a natural four-level
hierarchy of multiverses and he proposes a universe containing
about 1010115 Hubble volumes at the quantum level [27].

To show that (2) is an approximation of (1), the error be-
tween both expressions for different values of n can be calcu-
lated. For example, for the first 10 values of n, the difference,
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in absolute value, is shown in Table 1, where each number has
been calculated up to 16 decimal places.

It can be seen that when n increases, the error decreases.
This comparison between Hn and HEn could, in theory, be
continued for any value of n. However, this is practically not
possible due to several factors. A first limitation when calcu-
lating Hn, that is, making a term by term summation, is the
necessary computation time, which can be very long, when a
very large n value is desired. A second limitation is the numer-
ical representation in digital format. Due to the use of a finite
number of bits, the calculation tool will deliver the fraction
1/n, for very large n, equals to zero.

Continuing with the comparison between (1) and (2), and
to confirm that the error continues to decrease as n increases,
Table 2 shows the results for n = 10, 102, . . . , 108. Note that
Hn is calculated by adding term by term, and for the last value
of n there are 100 million terms.

When n tends to infinity, then the sum given in (1) is called
the harmonic series,

S =
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so that Hn is simply the partial sum of S. As many textbooks
show, there are well-known proofs of the divergence of the
harmonic series [13], and a review of some divergent series
can be found in [17].

However, the growth of the harmonic series is so slow so
the first 1043 terms sum less than 100 [26, 2]. Based on this
last observation, the question can be asked, how slowly does
it diverge? In this article, this reported [15, 23] “asymptotic
behavior” of (3) is reviewed and it is shown that there is a
numerical growth rate, which gives a clear idea of the slow
divergence of (1).

The paper is organized as follows: In Section II the statement
of the problem and the main interest of this work is presented.
A review of related literature follows in Sections III and IV.
Section V shows an analysis about the behavior of harmonic
numbers when the value of n is very large. One of the main
results is given in Section V.1, i.e., a numerical growth rate
(at the same time, divergence rate) is defined. In Section VI,
a different and possibly overlooked approach for calculating
harmonic numbers is presented. Finally, in Section VII, some
concluding remarks are given.

II Problem Statement
The interest, from a mathematical point of view, of knowing
the value of Hn for large n values can be found in [5, 14, 21,
30]. At present, these values have been limited, in some cases,
by the available computational capacity.

A very simple way to approximate Hn is through (2). How-
ever, as it can be seen in the previous section, there is an error in
the approximation of that value using term by term summation.

The following question is: up to what value of n is it com-
putationally possible to calculate term by term summations?
When trying to answer this question, two aspects show the
practical limitations from a computational point of view. The
first of these is the necessary computation time, if the calcu-
lation of Hn for a very large n value is desired, for example

for n ≥ 1042 [10]. The second aspect refers to limitations in
the numerical representation. For example, when trying to
calculate (1) for n >> 1042, fractions can trigger worst-case
behavior of rational arithmetic. Although according to Euler, as
n increases, the approximation between (1) and (2) is better,
it is also true that the calculation of ln(), instead of summation,
may not be accurate due to rounding errors in the numerical
representation to a finite number of bits.

In this paper, these two aspects are analyzed first, and then
a reformulation of Euler’s theorem, that is (2), is proposed,
so that without increasing the error in the approximation, the
harmonic number can be calculated for n values much higher
than those previously reported. There is also a special interest
in the remarkable behavior of the harmonic numbers when the
number of terms are very very large. So, it is also reported a
numerical growth rate value, which is not commonly seen in
harmonic series and harmonic numbers literature.

III Review of some reported calculations for
Hn

In order to obtain a value of Hn, two paths can be followed
in general: i) make the summation term by term, ii) use some
kind of approximation. With the option i) it is possible to
calculate the sum thanks to the current calculation tools. For
example, in [23] the result of the sum is shown for n = 100
using Mathematica software. In [31] the authors also used
Mathematica to manipulate symbolic calculations and present a
new sequence that converges to the Euler-Mascheroni constant.
Moreover, a spreadsheet can be used, as shown in [24].

Figure 1 shows the harmonic numbers up to n = 107, where
the term by term summation was made. The result of the sum
is Hn = 16.69531136585727. The graph was generated with
GNU Octave [7], a scientific calculation tool. A decreasing
slope can be noted, which falsely suggests convergent behavior.

Figure 1: Harmonic numbers up to n = 107.

With ii) option, the computation time can be significantly
reduced, since the term by term summation is avoided. An
acceptable approximation is that given by (2). Another ap-
proach is the asymptotic standard expansion by means of the
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Table 1: Hn and HEn comparison, n = 1, 2, . . . , 10.

n Hn HEn
|Hn −HEn

|
1 1.0000000000000000 0.5772156649015329 0.4227843350984671
2 1.5000000000000000 1.2703628454614782 0.2296371545385218
3 1.8333333333333333 1.6758279535696428 0.1575053797636905
4 2.0833333333333330 1.9635100260214235 0.1198233073119095
5 2.2833333333333332 2.1866535773356333 0.0966797559977000
6 2.4499999999999997 2.3689751341295877 0.0810248658704120
7 2.5928571428571425 2.5231258139568462 0.0697313289002963
8 2.7178571428571425 2.6566572065813685 0.0611999362757740
9 2.8289682539682537 2.7744402422377523 0.0545280117305014
10 2.9289682539682538 2.8798007578955787 0.0491674960726751

Table 2: Hn and HEn comparison, for n = 10, 102, . . . , 108.

n Hn HEn
|Hn −HEn

|
10 2.92896825396825 2.87980075789558 4.91674960726751× 10−02

102 5.18737751763962 5.18238585088962 4.99166674999607× 10−03

103 7.48547086055034 7.48497094388367 4.99916666673705× 10−04

104 9.78760603604435 9.78755603687772 4.99991666309541× 10−05

105 12.09014612986334 12.09014112987176 4.99999157277387× 10−06

106 14.39272672286499 14.39272622286581 4.99999181613475× 10−07

107 16.69531136585727 16.69531131585985 4.99974177614604× 10−08

108 18.99789641385255 18.99789640885390 4.99865393521759× 10−09

Euler-Maclaurin sum [3]:

Hn ≈ ln(n) + γ +
1
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− 1

(12n2)
+

1

(120n4)
(4)

− 1

(252n6)
+

1

(240n8)
− 1

(132n10)

+
691

(32760n12)
− 1

(12n14)
+ . . .

≈ ln(n) + γ +
1

2n
−

∞�

k=1

B2k

nk

1

n2k
= HEBn

where B2k are Bernoulli numbers. Equation (4) will be called
HEBn or Euler-Bernoulli approximation.

Equation (4) is the most recommended way to calculate
harmonic numbers. However, it is important to note that, for
n >> 1, the approximation HEBn tends to be equal to the
approximation HEn , since the terms to the right of 1/(2n),
will become smaller and smaller. In fact, for n = 10150,
from the computational point of view, only the first two terms
of Bernoulli remain, that is, 1

(2n)
= 5.00 · · · × 10−151, and

1
(12n2)

= 8.333 · · · × 10−302. For n = 10308, all terms, after γ
are evaluated as zero.

IV Computational limitations when calculat-
ing Hn

Now, the problem of the time needed to perform the calculation
of (1), when n is very large, is analyzed.

Using a naive approach, in a GNU Octave programming en-
vironment, the sum can be performed in a for loop as follows:
N=1e8;
S=0;
for n=1:N

S=S+1/n;
endfor

where 1e8 means 1× 108.
On a low-end personal computer (Intel Celeron(R) CPU

N3050 at 1.60GHz x 2, in 64-bit mode), it was found that
to obtain Hn up to n = 109 Octave requires 41.61 minutes.
Using a system designed for fast computations in number theory,
PARI/GP [19], a comparison is shown in Table 3. The difference
in time, between both environments, is around four times for
the last two numbers. Note how computation time increases
according to the exponent, i.e, ten times when going from 108

to 109.
A better approach when using a calculation tool such as

GNU Octave, which is a matrix calculation tool, is to build
a vector of length N and with a single instruction it is pos-
sible to get the sum, that is, a vector such as n=[1:1e8];
followed by sum(1./n) can be made. Then the value of
Hn ≈ 18.9978964138526 is obtained in a time of 3.2995 sec-
onds.

Now another limitation appears in the calculation. If the
vector n=[1:1e9]; is going to be built, then Octave returns an
error message, since the limit of the vector’s length that can
be handled is exceeded. Taking into account this limit, and
taking advantage of the instruction set from Octave, there is a
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Table 3: Computation time and results for Octave and PARI/GP

n Time Octave Time PARI/GP Hn Octave Hn PARI/GP
106 9.41 s 0.85 s 14.39272672286499 14.39272672865723
107 25.2378 s 7.50 s 16.69531136585727 16.69531136585985
108 4.089 min 1.12 min 18.99789641385255 18.99789641385389
109 41.61 min 11.50 min 21.30048150234850 21.30048150023479

function cumsum. In such a case, the speed of computation is
further reduced, as shown in Table 4.

Table 4: Computation time and results for Octave

n Time in s Hn

105 0.00343012809753418 12.0901461298633
106 0.03386807441711426 14.3927267228650
107 0.60533595085144043 16.6953113658573
108 5.99508500099182129 18.9978964138526

For n = 108, 4.089 minutes have been reduced to 5.99
seconds.

In addition to the limitation on the length of the vector, when
n begins to be very large, let’s say n > 1010, the computation
time is still a problem for term by term summations.

On May 7, 2019, the Department of Energy of the United
States of America announced a contract with the Cray Com-
pany, in collaboration with the processor manufacturer AMD, to
deliver to the Oak Ridge National Laboratory a supercomputer
which will be finished by 2021[11]. This supercomputer will
have a performance greater than 1.5 exaflops, that is, 1.5×1018

floating point operations per second. With this in mind, and
assuming that the machine can make 1.5×1018 summations in
a second, a total of 3.17×1016 years will be needed to complete
the sum up to a total of 1.5× 1042 terms.

For example, Malone evaluated the sum using an AMD
Athlon 64 CPU, clocked at 2.6 GHz in 64-bit mode. For n = 248,
the calculation took a little more than 24 days [15].

One way to avoid this limitation is to use (4) to get Hn.
Then, the computation time is reduced, but now a restric-
tion appears in the representation of large numbers in digital
format. According to GNU Octave, the maximum and mini-
mum number that can be represented in double precision is
1.79769313486232× 10308, and 2.2507385850720× 10−308. If
any number is exceeded above or below these values, it is
obtained in Octave, Inf and 0 respectively.

Using (4) for n = 10308 gives a value Hn ≈
709.773424307068. It is important to note that although a
value for n has been used very close to the limit of the capacity
of the machine, the harmonic number, or in theory the sum, is
only slightly greater than 700. As a way of comparison, it is
known that for n = 1043 the sum is slightly less than 100 [2].

V Quasi asymptotic behavior of Hn

When the value of n is large enough, one can falsely observe a
convergent behavior in the curve that represents the harmonic

numbers. It should not be forgotten that (1) is divergent and
this divergence is also reflected in the behavior of Hn when
n tends to infinity. For example, Malone [15] investigated
the convergence value of the harmonic series. Considering the
finite precision of the computation tool, that author tried to find
the value at which the sum converges or from which term the
sum becomes constant. However, computational limitations
are not sufficient reason to determine a convergence value.
Malone found that the sum becomes constant with n = 248, that
is, n = 2.81474976710656 × 1014, obtaining a value H248 =
34.1220356680478715816207113675773143768310546875.

Certainly, it is to be expected that when making term by term
summation, the resolution of the machine will not be able to
solve a value for 1/n if n is very large, giving from that value of
n, a zero. For this particular case, i.e., n = 248, using (4), it was
found H248 = H2.81474976710656×1014 = 33.8482803317789.

V.1 Growth rate for Hn

When investigating whether an asymptotic value can be deter-
mined for Hn with n very large, a value was determined to
find how quickly the sum grows. An estimate of the speed of
divergence is given in [28] as

H2k >
k + 1

2

and according to that author, a complete response to speed of
divergence of Hn in powers of 1

n
is given by Euler’s asymptotic

standard expansion for Hn, given in (4).
Although these approximations are well known, they do

not really define a value of the speed of divergence. In this
work, a different approach is taken. The first approach was
to calculate the increase of Hn by taking n = 10p to 10p+1,
for p < 8. Subsequently, starting with p = 10, 11, 12, ... up
to p = 308, and using (4), resulted in a constant growth rate
ΔH = 2.3026 / decade. A decade is the n interval given by
[10d−1, . . . , 10d], with d = 1, 2, 3, . . . . For example, the first
decade, d = 1, goes from [1, . . . , 10], the second decade, d = 2,
goes from [10, . . . , 100], and so on.

This result is remarkable, since it shows that HEBn only
grows a small amount when n goes, for example, from 10
million to 100 million terms, from 100 million to 1000 million,
and so on.

For example, taking n = 1043 up to n = 1044 it can
only be expected an approximated (rounded) growth of
2.3026 in HEBn . The result was confirmed using H1043 =
99.5883746636455 and H1044 = 101.8909597566395 so that
ΔH = 2.30258509299405.
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VI Proposed alternative calculation forHn and
results

Continuing with the analysis of the behavior of harmonic num-
bers, the following approach was chosen:

Let n be the maximum desired value in the approximation
of Hn, and also be n expressed as

n = 10p

since the main interest is for very large n values. For ex-
ample, it will take n = 1509268862211378832369356326
4538101449859497 terms for Hn to exceed 100 [2]. That is
n = 1.50926886 · · · × 1043.

Clearly p is given by p = log(n), where log is the base 10
logarithm. Using the values of HEBn , given by (4), taking
n = 10p for p = 10 up to p = 308, the question arises how
does HEBn grow with the exponent p instead of the number
of terms n?

Since the main interest is the calculation of Hn for n >> 1,
and since HEBn ≈ HEn, the following calculation is proposed.

Let n = 10p, so p = log(n):

M log(n) + γ = ln(n) + γ,

M p+ γ = ln(10p) + γ

where it is easy to verify that

M =
1

log(e)
= 2.30258509299405. (5)

It should be noted that M is independent of p and n.
Then, the approximation of Hn is proposed for n >> 1 as

Hn ≈ M p+ γ = HMp (6)

Equation (6) will be called approximation HMp.
This is an important simplification in the calculation of Hn,

when n is very large, since only a single productM p and a sum
(the term γ) are now required, provided that n is expressed
as n = 10p. This avoids the calculation of the logarithm for a
large number n and only the p exponent is required to calculate
Hn=10p .

Also

M =
ln(n)

log(n)
, and as p = log(n) with n > 1

then
M p =

ln(n)

log(n)
log(n) = ln(n)

thus
HEn = ln(n) + γ = M p+ γ = HMp (7)

Now it is shown that the absolute error between HEn and
HMp is very small.

Let us define an acceptable absolute margin of difference
(�) to consider two floating-point numbers as equal. According
to [16] that margin of difference is many times greater than
the machine’s �. This is because a sum involving thousands of
terms, and other calculations can have a significant number of
rounding errors. An exhaustive explanation of rounding errors
and a guide to choose an acceptable �, can be found in [9].

In GNU Octave � = 2.22044×10−16. So, defining � = 10−14,
then

Error = |HEn −HMp| < �

Although theoretically the error must be zero, if the following
calculation is performed in GNU Octave

Error = | ln(n)−M p| = | ln(n)− ln(n)

log(n)
log(n)| (8)

for n = 10p and p = 2, 3, . . . , 10, it is found that the error is
different from zero, but at the same time it is observed that
the condition Error < � is met. It should be noted that the
error is different from zero due to limitations in the numerical
representation and rounding errors. The results in GNU Octave
are shown in Table 5. It is important to see that with this value

Table 5: Error calculation due to machine number representation

n = 10p |ln(n)− ln(n)
p p| < �

102 8.88178419700125e-16
103 1.77635683940025e-15
104 1.77635683940025e-15
105 1.77635683940025e-15
106 3.55271367880050e-15
107 3.55271367880050e-15
108 3.55271367880050e-15
109 7.10542735760100e-15
1010 7.10542735760100e-15

of M , for n ≥ 10p, Hn can be calculated without the need
of (1), or (2 ), nor (4). Moreover, using p instead of log(n),
it can be obtained an approximation of Hn for very large n
values. Since n = 10p and p can be equal to 10308, then the
approximation of Hn would be calculated with n = 1010

308 .
Now that the advantage of using the constant M has been

shown, it should be noted that another way of seeing that
the growth rate per decade of harmonic numbers is precisely
equal to M , is obtained by calculating the difference between
HM(p+1) and HMp

ΔH = HM(p+1) −HMp (9)
= (M(p+ 1) + γ)− (Mp+ γ)

= M = 2.30258509299405

which had already been found in a heuristic manner in Section
V.1.

To verify the calculations of Hn with the constant M , that
is using (6), it was compared with the result of applying (2).
In Table 6, HMp corresponds to (6). It can be seen, the error is
close to �, and in some cases the machine returns it as zero.

Although, to our knowledge, there are no values similar to
those reported here, in Table 7 some harmonic numbers are
shown for n up to 105000. It should be noted that for these
values of n, (2) or (4) cannot be applied anymore, since the
machine limit is 1.79769313486232× 10308.

About the behavior of harmonic numbers, it is interesting
to observe the value of Hn is relatively small, that is, for n =

5
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Table 6: Comparison between HMp and HEn

n = 10p Hn ≈ HMp Hn ≈ HEn Error = |HMp −HEn|
1010 23.6030665948420 23.6030665948420 3.55271367880050e-15
1043 99.5883746636455 99.5883746636455 1.42108547152020e-14
1050 115.7064703146038 115.7064703146038 0.00000000000000e+00
10100 230.8357249643061 230.8357249643061 0.00000000000000e+00
10200 461.0942342637107 461.0942342637107 0.00000000000000e+00
10300 691.3527435631154 691.3527435631153 1.13686837721616e-13
10305 702.8656690280856 702.8656690280856 0.00000000000000e+00
10308 709.7734243070677 709.7734243070677 0.00000000000000e+00

Table 7: Calculation of HMp for n > 10308

n = 10p Hn ≈M×p
10500 1151.86976216192
101000 2303.16230865895
102000 4605.74740165299
105000 11513.50268063513

105000, Hn ≈ 11522.29, which continues to reflect how slowly
Hn diverges.

Thus, in this work, harmonic numbers for values of n much
greater than 1043 are reported. In addition, if the well-known
approximation given in (2) or (4) is used, again using Octave,
n = 10308 would be the highest possible value of n to make
the calculation of Hn, since the limit capacity of the machine
cannot be exceeded.

VI.1 Comparison results between Mp and special-
ized software

Specialized software libraries such as class libraries in C++, or
Python, becomes common place for mathematical algorithms,
so it is not unreasonable to compare the results between differ-
ent approaches. One such a specilized software is mpmath, a
free (BSD licensed) Python library for real and complex floating-
point arithmetic with arbitrary precision [12].

In the mpmath library, a function harmonic(n) can be found.
If n is an integer, harmonic(n) gives a floating-point approxi-
mation of the n-th harmonic number Hn.

According to the mpmath documentation, “the function
mpmath.harmonic is evaluated using the digamma function
rather than by summing the harmonic series term by term. It
can therefore be computed quickly for arbitrarily large n, and
even for nonintegral arguments.”

For sake of comparison, let us obtain Hn for n = 10100 in
mpmath, the result is given as

>>> harmonic(10**100)
230.835724964306

This result frommpmath can be compared with the value shown
in Table 6, for n = 10100, i.e., forth line. It can be seen, both
results are practically the same, but instead of digamma func-
tion, a single product plus γ was used. This difference in the

computation of harmonic numbers is one of the contributions
we are reporting.

If the reader is interested, other available platform can be
revised, like [22]. dCode is also a tool for calculating the values
of the harmonic numbers [6], among many others. The reader
can try to obtain the value of harmonic numbers for n ≥ 101000

on those platforms.
Another comparison can be made with a widely used com-

puter algebra system designed for fast computations in number
theory that is called PARI/GP [19]. For this case, the interesting
issue is the size of the number it can be introduced to perfom
the computation of the harmonic number. It was found it is
not possible to introduce numbers such as 101010 . For example,
with the default configuration, the largest accepted number,
without issuing an error, was 1010

6 . Trying 1010
7 , PARI/GP

delivers the message the PARI stack overflows.
A last comparison was done using a very interesting platform,

WolframAlpha [29]. In this case, the online version gives the
opportunity to try really big numbers. Without any problem
it is possible to obtain Hn for n = 105000, and n = 1010

10 . To
better compare the results between the proposed approach
and the WolframAlpha platform, Table 8 shows some compar-
ing results between the proposed approach and the funtion
HarmonicNumber[n] of the WolframAlpha platform.

The out from WolframAlpha in the last case is shown as:

Try the following:
Use different phrasing or notations
Enter whole words instead of abbreviations
Avoid mixing mathematical and other notations
Check your spelling
Give your input in English

It can be seen for n ≥ 1010
16 WolframAlpha is not capable

to deliver a result. With the proposed approach we could use
n = 1010

307 , since in this case p = 10307, and as it was shown
along the paper we can write Hn ≈ M p + γ, where M is
already known.

VII Conclusions and future work
In this paper, an alternative strategy was proposed to find
harmonic numbers for very large n values, that is, the compu-
tational limit of n = 10308 was exceeded to calculate Hn with
n close to 1010

308 .
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Table 8: Comparison of HMp and WolframAlpha for n > 10308.

n = 10p Hn ≈ HMp HarmonicNumber[n]
10500 1151.86976216192 1151.86976216192 . . .
101000 2303.16230865895 2303.16230865895 . . .
102000 4605.74740165299 4605.74740165299 . . .
105000 11513.50268063513 11513.50268063513 . . .

1010
15

2.30258509299405× 1015 2.302585092994046 · · · × 1015

1010
16

2.30258509299405× 1016 NO RESULT

The results presented are the following:
1. The calculation limits of Hn were exceeded, according to

the literature review, for the n values consulted.
2. A growth rate of harmonic numbers Hn was established,

approximately, at 2.3026/decade.
3. A constant M was defined and a new expression that

allows to calculate Hn drastically reducing the compu-
tational load. This new expression can be compared to
Euler’s formula where Hn tends to be exactly ln(n) plus
a constant γ, that is, Hn ≈ ln(n) + γ.

It was shown that for n ≥ 10p, p ≥ 1, Hn tends to be
log(n) times a constant M , which is, after rounding, M =
2.30258509299405, that is Hn ≈ M p+ γ.

Future work includes an evaluation of the effect of the num-
ber of bits in the error found in Table 5. However, it should
be clear that the processing of floating point numbers is inde-
pendent of the GNU or proprietary environment. Even when
environments such as Octave or M����� give the impression
that it works with fractional figures, internally the calculation
must be processed according to the IEEE754 standard, in this
sense, there is no point in comparing processors. Therefore,
this work is extensible to any architecture that follows this
standard.

The change from a cycle-based algorithm to one based on
a simple product of two factors, that is, M p, and a sum, with
an acceptable error, sets the path for future reformulation of
other similar problems, which are based on infinite sums.
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