Exploring the Optimal Battery Sizing in Grid-Connected PV Systems: A Comparative Study of PSO and GA in Oax, Mx

Main Article Content

Carlos Mauricio Lastre Domínguez Carlos Lastre-Domínguez
Hector Javier Jarquín-Florés
Álvaro César Guevara-Ramírez
Alfredo Cruz-Valdiviezo
Eric Mario Silva-Cruz
Noé Pérez Arreortúa

Abstract

The optimal sizing of Battery Energy Storage Systems is crucial for maximizing the efficiency and output of grid-connected photovoltaic (PV) systems. This study explores Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), both aimed at minimizing total system costs. The analysis evaluates several performance indicators, including total life cycle cost, optimal battery capacity and power ratings, integrated Levelized Cost of Energy (LCOE), and charge/discharge energy profiles. The results indicate that GA achieves a total cost reduction of approximately 3-4% compared to PSO, alongside a modestly lower integrated LCOE. However, PSO displays enhanced control over discharge depth, yielding a more stable state of charge trajectory.

Article Details

How to Cite
Carlos Lastre-Domínguez, C. M. L. D., Jarquín-Florés, H. J., Guevara-Ramírez, Álvaro C., Cruz-Valdiviezo, A., Silva-Cruz, E. M., & Pérez Arreortúa, N. (2025). Exploring the Optimal Battery Sizing in Grid-Connected PV Systems: A Comparative Study of PSO and GA in Oax, Mx. Difu100ci@, Revista De difusión científica, ingeniería Y tecnologías, 19(1), 49-57. Retrieved from http://difu100cia.uaz.edu.mx/index.php/difuciencia/article/view/399
Section
Encuentro Caxcán de Ciencia, Ingeniería y Aplicaciones Sustentables